学年

教科

質問の種類

数学 高校生

Pの範囲を求める時に1文字消去してやっても良いでしょうか? x=p-y (p-y)^2+(p-y)y+y^2=1 y^2-py+p^2-1=0 この判別式DがD≧0より D=p^2-4p^2+4≧0 よって... 同じ範囲は出るのですが、これで良いでしょうか?... 続きを読む

132変数関数/対称式の場合 xとyはx'+xy+y=1 を満たす実数とする. また, w=xy-x-y とする. (1) p=x+yとするとき, wをで表せ. (2)実数とりが2+xy+y2=1 を満たして動くとき,wの値のとりうる範囲を求めよ. I (大阪教育大後) の最 対称式は必ず基本対称式を用いて表せる. xとy 条件式と値域を調べる式がともに対称式の場合 の対称式の場合, x+y=u, ry=vとおけば, uと”の式に直せる. まず,条件式と値域を調べる式を u, vの式に直す.u, vの式に直すことで,x,yを消去するわけで ある.すると,消去される文字, yの条件をすべてu, に反映させなければならない. ここで, 「x, yが実数」という条件を反映させるのに, 「u, vが実数」 だけでよいのだろうか? もちろん 「x,y が実数」 ⇒ 「u, vは実数」は成り立つ。逆に, 「u, vが実数」 ⇒ 「x, y が実数」は成り立つ のだろうか? ここが問題である. 例えば,u=2,v=2となり得るのだろうか? これを調べるには, x, y を求めてみればよい. 解と係 数の関係により, u=2, v=2を満たすx,yは, 2-2t+2=0の2解である.この方程式の判別式Dに ついて, D/4=1-2<0 であるから, x, yは実数ではない. つまり 「u, vが実数」 であっても, 「x, y は 実数」とは限らないのである. x,yはf2-ut+v=0の2解であるから, x, y が実数という条件を, 判別式≧0 により, u²-4v≥0 A であ とに反映させる必要がある. この実数条件は, 忘れがちなので,とくに注意しよう. 角 (1) y と 解答 (1)x2+xy+y2=1により, (x+y)²=xy=1 ::p2-xy=1 :.xy=p2-1 まずxyをp(=x+y) で表す. 2 大 w=xy-(x+y) をpで表すと, wp-p-1 (2)まず,かの取り得る値の範囲を求める. x+y=p,xy=p2-1により, x,y tの2次方程式 t2-pt+p2-1=0 の2解である. x, y が実数である条件は, 判別式D について, D≧0 ←解と係数の関係. 本間の場合,前 文で述べたx, yの満たす方程式 t2-ut+v=0 で定 t= 2 2 よって,D=p2-4(p2-1)=4-3p20 ≤p≤ √3 √3 ……② は、2-pt+2-1=0である. 5 ①により,w=p WA 2 1 よって② において,wは= 1/2で最小,p= 2 2 √3 で最大となるから, wの値の取り得る範囲は 5 1 2√3 |2|53 2 √3 0 2|33| 12 01 ≤w≤ + 4 3 3 13 演習題 (解答は p.60) ←最大値は ① に代入して計算. MARK ST (ア),yx+y=4および≧0,y≧0を満たすとき,x-y'+x'+y'+xyの最小値 は (イ)とy 最大値は となる. (東京工科大・コンピュータ) 大値と最小値を求めよ.また,最大値と最小値を与えるx,yの値をそれぞれ求めよ. (ア) xy=t とおく . t を満たす実数とする.このとき, x2+y2+2(x+y) の最 ry+y2=9 の変域は,yを消去して tをxの関数と見ればよ (神戸学院大・リハビリ、薬) い。 46

未解決 回答数: 0
数学 高校生

(1)の問題です! ①黄色い線で引いたところについてなんですが、なぜD>0じゃなくてD≧0なんですか?D=0は解は1つなると習いましたが。 ②青い線で引いたところについてですが、1より大きくならないといけないのにどうして0になってるんですか?

基本 例題 52 2次方程式の解の存在範囲 2次方程式 x2-2px+p+2=0が次の条件を満たす解をもつように、定数の 値の範囲を定めよ。 (1)2つの解がともに1より大きい。 (2)1つの解は3より大きく、他の解は3より小さい。 p.87 基本事項 2 答 指針 2次方程式 x2-2px+p+2=0 の2つの解をα β とする。 (1)2つの解がともに1より大きい。→α-1>0 かつβ-1> 0 (2)1つの解は3より大きく、他の解は3より小さい。→α-3とβ-3が異符号 以上のように考えると,例題 51と同じようにして解くことができる。 なお, グラフを 利用する解法 (p.87 の解説) もある。 これについては、 解答副文の別解 参照。 2次方程式 x2-2px+p+2=0の2つの解をα, βとし, 判 | 別解] 2次関数 別式をDとする。 (0+1)=2) | (1) 1 =(b+1)(p-2)= f(x)=x2-2px+p+2 このグラフを利用する。 D=(-)²-(p+2)=p2-p-2=(p+1)(p-2) 解と係数の関係から a+β=2p, aβ = p+2 (1) α>1,β>1であるための条件は 20 D≧0 かつ (α-1)+(β-1)>0 かつ (α-1) (B-1)>0 D≧0 から よって (p+1)(p-2)≥0 p≤−1, 2≤p ...... ①e-(8-88- (α-1)+(β-1) > 0 すなわち α+ β-2> 0 から 2p-2>0よってp>1: ② (α-1) (B-1)>0 すなわち αβ-(a+β) +1>0 から Op+2-2p+1>0),(E- x=p> 軸について f(1)=3-p>0 から 2≦p<3 カ 0 10 x=py=f( a P B よって <3 ...... ③ 求めるかの値の範囲は, 1, 2, ST ③の共通範囲をとって -10 123 p (2) f(3)=11-5p<0 p> 11 い 解 題意から,α=βは えない。 2≤p<3 (2) α <β とすると, α<3<βであるための条件は (a-3)(B-3)<0 すなわち αβ-3(a+B)+9<0 ゆえに p+2-3・2p+9 < 0 - 30 SI 11 よって p> SI A=x #301

未解決 回答数: 1
1/37