学年

教科

質問の種類

数学 高校生

⑶において なぜm→+0のときt→+0となるのですか

EX 342 のすべてにそれぞれ1点で接する円の半径をbとする。 ただし, baとする。 xy 平面の第1象限内において, 直線l: y=mx(m>0) とx軸の両方に接している半径αの をCとし,円Cの中心を通る直線y=tx(t>0) を考える。 また, 直線lとx軸,および, (1) tをm を用いて表せ。 (2)を用いて表せ。 (3) 極限値 lim 1 b a m+om -1 を求めよ。 [東北大 ] YA ←直線 y=tx は,直 (1) 直線 y=tx と x 軸の正の向きが なす角を0とすると, 直線lとx軸 の正の向きがなす角は20である。 軸の正の向きとの なす角の二等分線である a → x 0 a y=tx 2 tan よって m=tan20= 1-tan 20 10-00- 2t ゆえに m=. ① 1-12 よって mt2+2t-m=0 -1±√1+m² ゆえに t= m -1+√1+m² t0, m>0であるから t= m ←2倍角の公式。 =00 ←tan0=t 500g ←tの2次方程式とみて 解の公式を利用。 (2) 半径が6である円をDとする。 Dの中心からx軸に下ろし (1) の図の黒く塗った直 た垂線にCの中心から垂線を下ろすと, sin0 について 角三角形 b-a a+b √2+1 b 1 t b-a = すなわち = a+b √t²+1 b 8209-1+ a b a -=Aとおくと A-1_ t 1+A 分母を払い, 変形すると √2+1-t>0であるから √2+1 (√2+1-t)A=√t2+1+t √ t²+1+t _ (√ t²+1+t)² = √√1²+1-t (√1²+1)²-12 A= したがって tan0=tから得られる直 角三角形 +2+1 =(√1²+1++)² ←分母の有理化。 1/2=(√+1 +t) ② a ...... (3) ①,② および,m→ +0 のとき t→ +0 であることから 1/6 iimo (22-1)=im 1-12 (21°+21F+1) m→+0m a t+0 2t =lim(1-t)(t+√t°+1)=1 t→+0 ←(√2+I+t) =2t2+1+2t√2+1, 2t で約分。

未解決 回答数: 1
数学 高校生

(2)について質問です。下線を引いているようになぜm+r+1/n≦1とm+r+1/n≧1で場合分けをするのですか?またその後に線を引いている(n-r)k+r(k+1)はどのようにして計算したら出てくるのかも分かりません💦どなたか教えてほしいです

第9章 整数・数学と人間の活動 40 よって、等式①は成り立つ。 (1)〜(曲)より、すべての実数xに対して, 等式①は成り 立つ。 [x]≦x<[x]+1 より [x] <x<[x]+1 n n [x] は整数であるから,[nx] は, nk, nk+1,nk+2, .........nktn-1 (kは整数)のいずれかで表される. [nx]=nk+r(r=0, 1, 2,…, n-1) kt1≦x<k+r+1 とすると,①より ......③ n n ここで,m=0,1,2, …………, n-1 として ③の各辺 に皿を加えると, n m+r m k+ ≦x+ m+r+1 <k+ n n n m+r+1 22 m+r k≦k+ n m n -≦1,すなわち,0≦m≦n-r-1 のとき, -≤ x + <h+ m+r+1 ≦k+1 n より[x+m-k =k n m+r,すなわち, n-r≧m≦n-1のとき, n m k+1≦k+m+rsxt. <k+ n m+r+1 <k+2 n n より,[x+m]=k+1 n したがって, [x]+[x+/-]+[x+2]+... + [x+ n-r n ] + [x x+ n-r n +x+ n. n =(n-r)k+r(k+1)=nk+r また②より よって、等式 [nx]=nktr [x]+[x+2]+[x+2]+....+[x+タリー[28] は成り立つ. 注 (1)において, m = 0, 1, 2 として ktmtr r≤x+. m m+r+1 <h+ のときの [x+7] 3 3 3 3 の他に着目すると, m+r+11 のとき [+] 3 mtr = 21のとき, [x+k+1 m =k r=0 のときは,これを満 すmの値はない。 kとなるのは, [x], n-r k+1となるのは、 n の(n-r) 個 [ x + 1 = 1 ] 0 n- の個

回答募集中 回答数: 0
数学 高校生

KP②-5 ソタについてなのですが、確率変数Wは卵1個の重さを表しているのは理解してるのですが、2枚目の写真の黄色のところと緑のところが同じ?置き換え?られてる理由がわかりません。 どなたかすみませんがよろしくお願いします🙇‍♀️

数学II, 数学 B 数学 C (2)養鶏場Kで収穫される卵1個の重さ (単位はg) を表す確率変数をWとする。 Wは母平均が m, 母分散が の正規分布に従うとする。 ただし,とは正の 実数である。 確率変数を Z= 0 W-mで定めると,Zは平均 サ,標準偏差 シ の正規分布に従う。 EXX -1≦Z≦1 となる確率は0. スセであるから,養鶏場Kで収穫された卵か ら1個を無作為に抽出するとき,その卵の重さw タ 5 となる確率は0. スセであることがわかる。 20 平均 m に対する信頼度 95%の信頼区間は 1である。(64.0.14) 母平均m を推定してみよう。 養鶏場K で収穫された卵から400個を無作為に 抽出し, 重さを調べた結果, 標本平均は 64.0g, 標本の標準偏差は5.0gであっ た。 標本の大きさが十分に大きいときには, 母標準偏差の代わりに標本の標準偏 差を用いてよいことが知られている。 標本の大きさ400は十分に大きいので母 チ タ の解答群(同じものを繰り返し選んでもよい。) 0.87 0.95 ①m+o ②m+20 -0 ④ m-o m-20 チ については,最も適当なものを,次の①~⑤のうちから一つ選べ。 ⑩ 61.1mm 66.9 61.8mm 66.2 ④ 63.5≧m≦ 65.9 ① 61.8mm 64.5 62.7mm 64.5 ⑤ 63.5mm≦64.5 (数学II, 数学B, 数学C第5問は次ページに続

未解決 回答数: 2
1/69