学年

教科

質問の種類

数学 高校生

四角2の(3)の問題です 3枚目の、緑でマーカーを引いている部分がわかりません なぜこのように変形できるのか教えてくださいm(*_ _)m

1 次の を正しくうめよ。 ただし、解答欄には答えのみを記入せよ。 (1) √3+√(-2)2-3を計算し、簡単にすると, (ア) となる。 (2) (2x+1)(2x-5) (x-2) を展開し、整理すると, (イ) となる。 (3) 4q+4ab-36 を因数分解すると, (ウ) となる。 11x-20 <3(x+4) (4) 連立不等式 の解は, (エ) である。 x+2 2x-1 ≦1 2 3 (5) 方程式 17x-41=3 の解は, x= (オ) である。 2 2次方程式 x2-4x2=0の2つの解を a, b (a <6) とする。 (1) a, b の値をそれぞれ求めよ。 (2)+6°+2の値をそれぞれ求めよ。 a 金 不等式 x=/..①を解け。また,不等式①と k≦x≦k+3 をともに満たす 整数xがちょうど2個存在するような定数kの値の範囲を求めよ。 (配点 25 ) 3 太郎さんと花子さんは、食塩水の濃度についての課題を考えている。 課題 x>0とする。 濃度がx% の食塩水 200g がある。この食塩水に, (A)または(B)の ずれかの操作を行い,食塩水の濃度が4% 以上 6% 以下になるようにする。 <操作> (A) 水を110g 加える。 (B) 食塩を7g加える。、 このとき、ある条件を満たすxの値の範囲について考える。 太郎 : 食塩水の濃度は、食塩水全体の重さに対する食塩の重さの割合を%で表した (食塩水の濃度)= (食塩の重さ) (食塩水の重さ) -X 100 (%) だよね。 食塩と食塩水の重さに着目するといいよね。

解決済み 回答数: 1
数学 高校生

線を引いたところ、 dを(ax’+by’)で表すのはなぜか、 二つ目のところ、なぜ整数になるのか 3つ目のところ、dがaとbの公約数といえるのはなぜか この3点、特に解説お願いします。 全体的によく分からなかったので、できれば流れから詳しく教えて頂きたいです。お手数お掛けし... 続きを読む

| 上人委mmm 121 9eeee 6, の は整数で互いに素であるとする。 任意の整数 。 y に対して, のる | 体の集合を47とし, /7の正の要素のうち最小であるものをとする。 1) の要素はすべてで割り切れることを証明せよ。 (2) 〆=ー1 であることを証明せよ。 (@HART 人9 OLOFTTON 直接証明しにくい問題 対偶を証明する |2] 背理法を利用 (1) 背理法で証明。zx十6yをで割った余りが 0 でないと仮定して矛盾を導く。 (2) 1ミ2 は明らか。gのミ1 を示す。 (1) の任意の要素 Zz十のy をので割った商を の,余りをヶと すると 6を十のッー99十ヶ ただし 0ミヶくの っ よって ヶニgz十のーの7ニgz填のー(ge填の9 年 のは77の要素であるか ーーg(ァーァの)十0(ッータ9) ら, のーgX'十が と表さ 2 テー, ターはともに束数であるから, は77の要素で | “や - ある。ここで, ヶキ0 であると仮定すると 0<ヶ< これはのが77の正の要素のうち最小であることに反する。 したがって, ヶ三0 すなわち77の要素はすべてで割り切れる。 (2) 2は正の整数であるから 1Eミ9 …… ① また, gc1十の0, 2の*0十か1 であるから, , のは7の 要素であり, (1)から々はとらの公約数である。? Zと5の最大公約数は 1 であるから 9ミ1 …… ②⑨ ①, ② から g=1 である。 すべての整数は 1 の倍数であるから。 上の(1) よ のニ1 を満たすx。ッは存在し, 本 IiGであり Wc/7 よって 太ーW となり, 存在することがわかる。

回答募集中 回答数: 0