学年

教科

質問の種類

数学 高校生

明日テストなので、至急ではないのですが、回答していただけると嬉しいです!! (2)です。解説見ても解き方分からないので教えて欲しいです。 特に黒丸をつけた重解ら辺が分かりません。 4mはどこからきたのか、2・5はなにか、を中心に教えてもらえると助かります。

練習 28 x+y^2=5と直線 y=2x+mについて, 次の問いに答えよ。 教 p.99 (1)円と直線が共有点をもつとき, 定数mの値の範囲を求めよ。 (2)円と直線が接するとき, 定数の値と接点の座標を求めよ。 針円と直線の位置関係 円の方程式と直線の方程式からyを消去して,xにつ いての2次方程式を作る。これを解くと, (共有点があれば) 共有点のx座標 が求められるが,円と直線の位置関係を知るには,この2次方程式の判別式 Dの符号を調べればよい。 (1) 共有点をもつ共有点は2個または1個 D≧0 (2) 接する→共有点は1個 D=0 解答 x2+y=5とy=2x+mからyを消去すると x2+ (2x+m)=5/ 整理すると 5x2+4mx+(m²-5)=0 ...... ① 判別式をDとすると 1/2=(2m)2-5(m²-5)=-(m-25) (1)この円と直線が共有点をもつのは, D≧0のときである。 よって, m²-25≦0より -5≤m≤5 (2)この円と直線が接するのは,D=0のときで ある。 よって, m²-25=0より m=±5 また, 方程式 ① が重解をもつとき, その重解はx=- 4m_2 2・5 m 5 この値をy=2x+m に代入すると 2 5 y=2( — — — — m) +m=— — — m 1 5 y=2x+m v√5 X 0√5. m であるから,接点の座標は(-/1/23m, 1/3 m) と表される。 L=5のとき (-21), m=-5 のとき (2,-1) 劄

解決済み 回答数: 1
数学 高校生

この問題で自分はMP:PN=(1-t):tと置きました。すると、tの値を間違えてしまいました。どのようにしたらtと1-tの置く位置を間違えないようにできますか?

★★ CAの重心を それぞれST また, C を導 垂直で,大きさが6の 48空間においてでない任意の方に対して,とx軸, y軸, 2軸の正の ★★☆☆ のなす角をそれぞれ α, B, y とするとき, cos'α+ cos' B+ を証明せよ。 例題 51 空間における交点の位置ベクトル平一口 思考プロセス D 頻出 ★★☆☆ 四面体 OABC において, 辺 AB, BC, CA を 2:33:2, 1:4 に内分する点 をそれぞれL,M,Nとし, 線分 CL と MN の交点をPとする。 OA=a, OB=6,OC=c とするとき,OP を a,b,cで表せ。 例題23(1) の内容を空間に拡張した問題である。 « ReAction 2直線の交点の位置ベクトルは, 1次独立なベクトルを用いて2通りに表せ 例題23 見方を変える 1次独立のとき ア 空間におけるベクトル OS 線分 CL 上にある 点P OT OP = (1-s)[ 線分 MN 上にある +s=a+6+[ イ OP = (1-t)+t¯¯ = @_ã+® 6+ c F 解点Pは線分CL上にあるから, 23 例題 CP:PL=s:(1-s) とおくと 'B OP= (1-s) OC+ SOL 辺AB, BC, CA を2:3, 3:2, 1:4 に内分する点が それぞれL,M,Nであ る。 D 00 + OA + OB 3 (1-s)c+s(a+b) 3 Ak-- 30A +20B OL= 5 5 2+3 = -sa+sb+(1-s)c L ③ -2 ... 1 B3 M O + OB + OC 点P は線分 MN 上にあるから, MP:PN=t: (1 - t) とお 3 20B + 3OC OO + OC + OA = くとOP (1-t)OM + tON OM= 3 JA12 3+2 40C+OA + ON 5 5 5 1+4 201 = 5 a+ (1-1)+(3+1)c +1-0+(3+)-2-) Jet J a, はいずれも0でなく,同一平面上にないから, ①,②り 3 ---(1-0) -0.178 ■係数を比較するときに は必ず1次独立であるこ とを述べる。 1-s= (3 1 5 ⑤5 3 ③ ④ より S= t= 4 3 → これは ⑤ を満たすから OP= a+ 1 7 3 -6+ ①にsの値, または ②にもの値を代入する。 20 10 105 p.139 問題51 ぞれS, TE 作ることを示 p139 問題 [習 51 四面体 OABC の辺 AB, OC の中点をそれぞれ M, N, ABC の重心をGと OP a, b, OPを4, で表せ。 し、線分 OG, MN の交点をPとする。 OA = 4, OB=6,OC=とすると

解決済み 回答数: 1
数学 高校生

この125の[1][2]の話なのですが、チャートに付いている解説を聞いてみたら、∠Aは向かいの辺が一番大きくなることはないから鈍角にはならないと言っていましたが、∠Cも向かいの辺が一番大きくなることはないのではないかと思いわからなくなりました。 教えて欲しいです🙇‍♀️

基本 例題 125 鈍角 (鋭角) 三角形となる条件 △ABCにおいて, a=4, b=5 とする。 1辺の長さc の値の範囲を求めよ。 (2)△ABCが鈍角三角形のとき、辺の長さの値の範囲を求めよ。 CHART & SOLUTION 三角形の成立条件 a <b+c, b<c+a,c<a+b ZA Da²<b²+c² p.194,195 基本事項 3. 辺と角の関係 ∠Aが直角 ∠Aが鈍角 a=b2+c a²>b2+c2 205 (1) 三角形の成立条件, (2) 鈍角三角形となる条件からの値の範囲を求める。 (2)では,∠Bが鈍角の場合と∠Cが鈍角の場合があることに注意する。 解答 4 14 081= 別解 (1) 三角形の成立条 件から (1) 三角形の成立条件から 4 4<5+c, 5<c+4, c<4+5 CV) - 081 整理して -1<c, 1<c, c<9 共通範囲を求めて 1 <c <9 ...... ① 2) 辺BC は最大辺ではないから,∠Aは最大角ではない。 すなわち, ∠Aは鈍角ではない。 [1] ∠B が鈍角のとき b2c2+α から よって c²<9 c> 0 であるから [2] ∠C が鈍角のとき c2> d' + b2 から よって c²>41 c>0 であるから 52c2+42 0<c<3......②. C242+52 c√41 ③ la-bk<c<a+b よって |4-5| <c<4+5 ゆえに 1 <c <9 (p.1954 ② 参照) [1] ∠B が鈍角 A #OBAL 5 4 B [2] ∠Cが鈍角 C 15 ② ③ を合わせた範囲は 0<c<3, √41 <c ...... ④ √41<c よって, 求めるcの値の範囲は,① ④の共通範囲で 1<c<3, √41<c<9 B 4 ← ① かつ (② または ③ 内角のどれか1つが鈍角

解決済み 回答数: 1
1/57