学年

教科

質問の種類

数学 高校生

(2)の問題が回答を見ても頭がこんがらがって理解できません。どのようにしてこの答えの導出になるのか教えてください。

2.OBと1 し 練習問題 5 鋭角三角形ABC がある. 頂点Aから辺BCに下ろした垂線の足をHと D 調講 ■よび さらにHから辺 AB, AC に下ろした垂線の足をそれぞれPQとす A. P, H, Qは同一円周上にあることを示せ. P, B, C, Q は同一円周上にあることを示せ. この問題では,「内接四角形の定理の逆」を使ってみましょう。あ る四角形の「対角の和が180°」であれば,その四角形は円に内接 することがわかります. 練習問題 4(2)で見たように,「対角の和が 180°」であ ることは「ある内角がその“対角の外角” と等しい」ことと同じであることも 頭に入れておくといいでしょう. 313 解答 A (1)∠APH + ∠AQH=90°+90°=180° であるから, A 内接四角形の定理の逆より,四角形APHQはd に内接する.つまり,A,P,H,Q は同一円周上 にある. れ (2)A,P,H,Q は同一円周上にあるので,円周角 B H A の定理より, ∠AQP=∠AHP .....① P 第8章 また,∠AHB=90°∠APH=90°より, ∠AHP=90°-∠BAH=∠ABH ①,②より ∠AQP=∠PBC. 四角形 PBCQ B は,1つの頂点の内角がその 「対角の外角」と等しいので,内接四角形の定 理の逆より,四角形 PBCQ は円に内接する. したがって,P, B, C, Q は 同一円周上にある. コメント (2)は,連想をつなぐことがかなり難しい問題です。こういう問題では,「結 論が成り立つためには何が成り立てばよいか」という方向で考えていくといい でしょう.例えば,「∠BPC= ∠BQC」 が成り立てば円周角の定理の逆が利 用できますし,「∠PQC+∠PBC=180°」 が成り立てば内接四角形の定理の逆 が利用できます.こうしたいくつかの候補のうち、現時点で手にしているもの からたどり着けそうな場所を探すわけです。

回答募集中 回答数: 0
数学 高校生

数Aです この問題の(2) …②のところの ∠AHP=90°-∠BAH=∠ABH になる理由が分かりません 教えてください🙇‍♀️

練習問題 5 鋭角三角形ABCがある. 頂点Aから辺BCに下ろした垂線の足をHと 78 さらにHから辺AB, ACに下ろした垂線の足をそれぞれP, Qとす る。 (1) A, P, H, Q は同一円周上にあることを示せ . (2) P, B, C, Q は同一円周上にあることを示せ . この問題では, 「内接四角形の定理の逆」 を使ってみましょう。 あ る四角形の 「対角の和が180°」 であれば、 その四角形は円に内接 10 することがわかります. 練習問題4 (2)で見たように, 「対角の和が180°」 であ ることは 「ある内角がその“対角の外角” と等しい」ことと同じであることも 頭に入れておくといいでしょう. 新 主月 ハロ mm 解答 (1) APH + ∠ AQH=90°+90°=180°であるから, 内接四角形の定理の逆より、四角形 APHQは円 に内接する。 つまり, A, P,H,Qは同一円周上 にある。19/ (2) A, P, H, Q は同一円周上にあるので, 円周角 B' の定理よりもBARAの立 ∠AQP=∠AHP .......1 また, ∠AHB=90° ∠APH=90° より . TEA H ∠AHP=90°∠BAH=∠ABH....... ② B は、1つの頂点の内角がその 「対角の外角」 と等しいので、内接四角形の定 ①,②より,∠AQP=∠PBC. 四角形 PBCQ 理の逆より、四角形 PBCQ は円に内接する。 したがって, P, B, C.Qは 同一円周上にある。 313 問題です。 こういう問題では、「結 う方向で考えていくといい の定理の逆が 第8章

回答募集中 回答数: 0
数学 高校生

四角5の簡単な解き方を教えてください!!

0<r<6の範囲で,Sはr=73 (cm)のとき最大値79 (cm')をとる。 12-2-3 =のとき,次の式の値を求めよ。 このとき,中心角は =12(ラジアン) 3 2| sin 0 +cos0 0=- 三 (1) sin Ocos0, sin°0 +cos°0 (2) sin0 - coso (く0く) 5 半径(6 の円C,と半径2の円 C,があり,中心間の距離が V3+1である。このとき,2つの円が重なっている部分の 面積Sを求めよ。 4 sin°0 + cos®0 V17 13 解答(1) sin Ocos 0 C, 27 3 C2 (解説) (1) sin 0+cos0 = の両辺を2乗すると 3 1 sin?0 + 2sin 0 cos0 +cos?0 = 9 17 医 ェ ーπ-3-V3 6 解答 1 1+2sin0 cos0 9 よって 解説 sin ecos0 =(G-)+2=-。 (1-9) 4 -1)-2= 9 ゆえに 9 2つの円C,, C,の中心をそれぞれP, Q, 交点を A, B C、 V6 C。 2 とし,ABと PQの交点をHとする。 △APQ において,余弦定理により PA?+ PQ?-AQ? 2PA·PQ また sin 0 + cos®0 =(sin0 +cos 0 )(sin?0 - sin 0 cos 0 +cos?0) =(sin0 +cos0)(1-sin0 cos0) P /3+1- PQ *H 13 cos ZAPQ 27 B (2) (1) から(sin0 -cos0)?=sin?0 -2sin0 cos0 +cos?0 (V6)?+(V3 +1)?-22 17 2.V6 -(V3 + 1) /2 =1-2- 0 9 0<ZAPQくであるから T ZAPQ= 4 く0くxでは, sin 0 >0, cos0<0であるから sin0 -cos0>0 PH=\6cos=V3 よって /17 sin 0 -cos0 = 3 よって,①から HQ=PQ-PH=V3 +1-V3 =1 よって,AQ:QH=2:1, ZAHQ=; であるから ZAQH=; 求める面積は 32次方程式25x?-35x+4k==0の2つの解がそれぞれ sin0, cos0 で表されるとき,k (扇形PAB-APAB)+(扇形QAB-AQAB) の値を求めよ。また,2つの解を求めよ。 と等しい。 3 ここで 扇形 PAB=-(V6)?.. 2 3 解答 k=3;x= 4 3-6 照形 QAB--2= 5 APAB=- V6V6 =3 2 4 解説) 同様に 3 3 2次方程式の解と係数の関係から AQAB=;2-2.sin -35 7 sin 0 +cos0 = - 25 5 したがって,求める面積Sは 4 sin 0 cos0 = -k 254 S= 2 r-3) +(ェーV3 4 エ-3-V3 17 3 6 のの両辺を2乗すると,sin?0+ cos?0 =1 から 49 12 sin 0 cos 0 = 25 1+2sin 0cos0 よって 25

回答募集中 回答数: 0
1/2