学年

教科

質問の種類

数学 高校生

数IIの領域の最大値最小値の問題です。 ③の直線として考える理由がわからないので教えてください🙇🏻‍♀️

① テーマ領域における最大・最小を考える (教科書P118) 2 例題 x,yが4つの不等式x≧0,y≧0, 2x+y≦8, 2x+3y≦12 を同時に満たす とき, x+yの最大値、最小値を求めよ。 ①まず, 与えられた不等式から領域を確定する。 x,yが4つの不等式x≧0 y≧0, 2x+y8, 2x+3y≦12 を同時に満たす 領域をAとする。 2x+y≦8 2X+34≤12 2x+y≤8 (0.0) 8 5 ↑y (0.4) RA k (3, 2) 45 (40) ys-zx+P x 2x+19512 領域Aは4点 (0, 0), (4,0),(3,2), (0,4) を頂点とする四角形の周および内部である。 Q,次の空欄を埋めよ x+y=k ① とおくと, y=-x+kであり、これは傾きが y s - 1/2 x ₁4 x+yの最大値 最小値を求めたい。 ? この, 斜線部分のどこをとってくればよいか, 文章で整理してみよう。 最小値はAの範囲の中で(0.0)が1番最小となる。 最大値はAの範囲の中でみると直線の不等式の交点 である(32)が(番最人となる。 y切片がで ある直線を表す。 この直線①が領域Aと共有点をもつときのんの値の最大値、最小値を求 めればよい。 x+y=kとおき、直線を考えるのはどうしてだろう? 文章で整理して みよう。 Q,次の空欄を埋めよ ] 8 領域 Aにおいては、 直線 ① が x= (3, 2) x 点 (3,2)を通るときは最大で,そのとき 点(0,0)を通るときは最小で,そのとき である。 したがって, x+yは y=2のとき最大値 x= 0 y= 0のとき最小値 0 をとる。 k= 5 k= 5をとり, ④ この問題に対する自分なりのアプローチをまとめなさい 0 3

回答募集中 回答数: 0
1/16