学年

教科

質問の種類

数学 高校生

(2)を解き、答えもあっていましたが、私の答案の書き方で直した方がいいところを教えてください。

4 サイコロ型・ (1) 2個のさいころを同時に投げるとき, (i) 目の数の差が2である確率はいくらか. (ii) 目の数の積が12である確率はいくらか. (2)3個のさいころを同時に投げるとき,あるさいころの目の数が残りの2つのさいころの目の 数の和に等しい確率はいくらか. ( 椙山女学園大) 1 2 3 4 5 6 O O O さいころは区別する 目はさいころ1つにつき6個あるから, 2個投げ た場合,目の出方は36(=62) 通りあってこれらは同様に確からしいさい ころ2個であれば右のような表を書いて条件を満たすところに印をつける (図は目の数の和が6の場合で確率は5/36) という解法も実戦的と言える. さて,右表で「1と2の目が出る」 は2か所にあるが,これは 「区別できる さいころに1と2の目を割り当てるとき, 割り当て方は2通りある」 という 5 O ことである. ゾロ目は割り当て方が1通りなので表でも1か所ずつである. 6 12345 10 まず目の組合せを調べる さいころが3個以上のときは,表を書いて解くのは大変である. 上で述 べたように,まず目の組合せを調べ, 次にどの目をどのさいころに割り当てるかを考える. ③ (a,b,c)の関係性の国立 (サイコロ) 解答 ①サイコロ ②出に目一列に並べる→口 サイプわりわてるふり (1) 2個のさいころを区別し, A, B とすると, 目の出方は62=36通りあり, 表を使って解いてもよい。 これらは同様に確からしい. (i) 目の組合せは {3, 1}, {4, 2}, {5, 3}, {6, 4}の4通りで,どちらがAでAが3, Bが1とAが1. Bが あるかで各2通り。 よって出方は4×2=8通り. 求める確率は 8 2 36 9 など2つの目が異なるので割り 当て方は2通りずつ(Ⅱ)も同 様 (17 (i) 目の組合せは {2,6}, {3,4} だから, (i) と同様に目の出方は 4 1 2×2=4通り. よって確率は = 36 9 (2) さいころを区別すると, 目の出方は 63=216通りある. ←同様に確からしい. 3つの目を a, b, c として, a=b+c を満たす(a,b,c) [ただしbsc] を調 ここは3つの目の組合せ. べると, (2, 1, 1), (3, 1, 2), (4, 1, 3), (4, 2, 2), wwwwwwww wwwwwww (5, 1, 4), (5, 2, 3), (6, 1, 5), (6, 2, 4), (6, 3, 3) wwwwww ←αが小さい順, αが同じならが 小さい順. 目の割り当て方は,が各3通り,それ以外は各3!=6通りあるから,216 ~ は,異なる目をどのさいこ 通りのうち、条件を満たすような目の出方は ろに割り当てるかで3通り. 3×3+6×6=45 (通り) ある. 全ては等確率では出 45 5 ません!! 従って、求める確率は 216 24 4 演習題 (解答は p.47) 1から6までの目をもつ立方体のサイコロを3回投げる。 そして 1,2,3回目に出た目 をそれぞれ a, b, c とする. (1) a, b, c を3辺の長さとする正三角形が作れる確率を求めよ. (2)/α,b,cを3辺の長さとする二等辺三角形が作れる確率を求めよ。 (3) a, b, c を3辺の長さとする三角形が作れる確率を求めよ. (滋賀医大) まず a b c の組合せを 列挙する. 何かが小さい 順など, 系統的に数えよ う. (1) (2) 以外は3辺 の長さが相異なる. 37

回答募集中 回答数: 0
数学 高校生

これの(2)の解き方の考え方を教えて欲しいです。

C1-40 (226) 第3章 平面上の Think 題 C1.22 ベクトルと軌跡 平面上に△ABC があり, 実数kに対し、 12p=46+5c-kc-b) 3PA +4PB+5PC=kBC を満たして動く点Pがある。このとき,次の問いに答えよ. (1) kがすべての実数値をとって変化するとき, 点Pの描く図形を図示 せよ. (2)△PAB, △PBCの面積をそれぞれ, S, S2 とするとき S:S2=1:2 となるようなkの値を求めよ. 考え方 (1) 点Aを基点として,AB=AC=CAP= とおいて与式に代入し、 の形に変形するは,を通りに平行な直線) 解答 wwwwwwwww (2) △ABCの面積をSとし,まずは S, S2 をそれぞれSで表す。 (1)点Aを基点とし,AB=1, AC=C, AP= とおく. 3PA+4PB+5PC=kBC より 3(-)+4(-)+5c-p)=k(c-b) AP: AQ=3:4 ...... ② より 4 41 38' 3 ベクトルと図形 (227) C1-41 **** であるから,S:S2=12 のとき, ST -S 80 △ABQの面積を S3 とすると, もう片方を特定 したがって, BQBC=1:6 ...... ③ 次に, ①を変形すると, △ABC: △ABQ =BC: BQ 0 んを含まない部分 12 46+5cc-6) ......1 (動かない) と, kを含 12 む部分(動く)に分け 49 3.46+52 (-b) る. -5-(-6)=5¬BC 9 12 9 10 A AP= (4+k)+(5-k)c 12 であり,②より ATH 0 AQ=1/AP=12(4+k)+(5-k)c 3 (4+k)b+(5-k)c よって, 交点の付 9 BQ=AQ-AB 12 (4+k)b+(5-k)c 一言 上の点である. 9 より,Qは直線 BC 点PがABCの内部 の場合と外部の場合が ある. 45246 第3章 4+k 5-k_9 1 9 9 9 RA 12 3-4 A 線分 BC を 54 に内分する点を D, 線分AD を だからBQBC-156k1 ORO 9 3:1 に内分する点をEとすると, wwwwwwwww A ADBC-AEBC 002+111.015-k=1 6 GO+AO-1 FP G wwww よって,点Pは点E を通り辺BC に平行な直線上 にある. RIA 3 5-k=± Q E 6 + P 11 その直線と辺 AB, AC の交点を F, Gとすると, AF: FB=AG: GCA B 5-D--4-C よって、 k = 1/12 1/27 7 13 2' =AE ED =3:1 であるから,点Pの描く図形 は、 右の図の直線 FG である. F P B PF G Q1B C kがすべての実数値を とるので,直線 FG と なる. 注》頂点Bを基点とし、BA=BC=BP=_ とすると 3PA+4PB+5PC-kBC 1, 3(a-p)+4(-p)+5(c-p)=kc となる. 5-k P この式を整理すると, 12 よって、点Pは,辺AB を 3:1に内分する点 F を通り直線 BC に平行な直線上を動く. B C 練習 01.22 ABCがあり実数kに対して、点PがPA+2P+3PC=kAB を満たすも B1 B2 ADDを求めよ C1 (2)直線APと直線BCの交点をQ とすると, FG/BC より AQ:PQ=AB:FB=4:1 したがって,△ABCの面積をSとすると,点Pが どこにあっても,△PBC の面積 2 は一定で, S= s

回答募集中 回答数: 0
数学 高校生

お願いします!

d= 75 la,b,cは定数とし,α > 0,b≧0 とする。 関数 f(0) = sin (a+b)+c に対して, y=f(0) のグ ラフについて考える。 (1) c=0 とする。 y=f(0) のグラフが図1の ようになったとする。このとき,a=ア であり, bとしてあり得る値の中で最小のもの はイである。 また、ここで求めた α と, d≧0 を満たす 実数 dを用いてf(0)=-sin(-al+d) と表 たとする。このとき, dとしてあり得る値の中で最小のものは, sin(0)=ウ すとき, y=f(8) のグラフが図1のようになっ 図1 a= ク ウ I π ⑩ ① 3 難易度 ★★★ である。 エ の解答群 の解答群 ラ の解答群 ケ の解答群 ⑩0 軸方向に ②0 サ の解答群 ⑩ cost 3 0 0 0 / r © « ・π π 2 ク 2 sin ① cost ② sin0 3 - cos (20)のグラフが図2のようになったとする。このとき, C = カ である。 0≦b <2π を満たすムとして 1個あり,その中で最小のものは あり得る値は キ である。 また,y=f(0) のグラフはy=cos オ 10 のグラフを サ したグラフと重なり,さらに, y=l コ なる。 ク だけ平行移動 y軸方向に ① cos 20 目標解答時間15分 COS カ π 3 7 1 2 ク OT 6 ケ のグラフと重 Fo 6 だけ平行移動 cos²0 SELECT SELECT 90 60 π カ ① y 軸方向に 4 cos2 20 53 VA 3 5 3 T W www. T 7 4 2π π であるから, 0 1 T 2図 図2 だけ平行移動 5 cos². 2 (配点 15) <公式・解法集 77 79 180

回答募集中 回答数: 0
数学 高校生

すみませんお願いします

d= a= 75 la,b,cは定数とし,α > 0,b≧0 とする。 関数 f(0) = sin (a+b) +c に対して, y=f(0) のグ ラフについて考える。 (1) c=0 とする。 y=f(8) のグラフが図1の ようになったとする。このとき, a = ア であり, bとしてあり得る値の中で最小のもの はイである。 また,ここで求めた α と, d≧0 を満たす 実数 dを用いてf(0)=-sin(-a0+d) と表 すとき、y=f(0) のグラフが図1のようになっ たとする。このとき, dとしてあり得る値の中で最小のものは, sin(0)=| 図1 ク 1 0 I 9 オ π , である。 エ ① C = 難易度 ★★) キ あり得る値は また,y=f(0) のグラフはy=cos[ したグラフと重なり,さらに,y=コ なる。 の解答群 の解答群 ② π 3 ケ の解答群 ⑩0 軸方向に 0 軸方向に サの解答群 ⑩ cose O ウ の解答群 ⑩ sine ① cost ② sino 3-cos (2) y=f(0)のグラフが図2のようになったとする。 このとき, カ である。 0≦b < 2 を満たすとして である。 1個あり,その中で最小のものは オ ケ のグラフと重 π ク ①1/② 2 ③ π π ク 5 67 だけ平行移動 y軸方向に , . 目標解答時間 15分 カ -3 7 1 2 -π ク OT 6 ・π 10 のグラフを 2 3 だけ平行移動 0 ① cos20 Ⓒcos - Ⓒcos ²0 COS ① y 軸方向に R 3 ⑤ π π 7-6 カ 6 SELECT SELECT 90 60 6 VA colent 53 TC 2π π www. W O T 2 図2 であるから, 0 H. t. 11 67 + π 0 だけ平行移動 0 2 ④ cos2 20 5 cos². 2 3 0 π (配点 1

回答募集中 回答数: 0
1/59