学年

教科

質問の種類

数学 高校生

この問題の(2)の解答の(i)のところのやり方が違ったので、合ってるかみてほしいです!また、私のやり方が合ってたとしても解答の解法が1番すっきりしてて良いと思うのですが、どうしたら私のでなく解答の解法が思いつきますか?

y= 9 が有理数となって矛盾することか らわかります。これを利用するには、与式を無理数を含む部分と含まない (x) 部分に分けます。 0xy平面の2直線のなす角をとらえるには, 傾きとtan の加法定理を利用します。 まず, tan の定義を思いだしておきましょう. 座標平面で 点A(1.0) が原点を中心に角だけ回転し点 P(x, y) になるとき (動径 OP の角が という Ay P ですから、否定的にしか表現で 麺の証明は -C (否定 「〜でない」ことが簡単に背定で表現できないことが . x+2y-2-(x+2)√3 0 ことが多く、青 xyは整数(有理数)では無理数だから 理法によるのが普通です. したがって,「無理数であることの証明は、 有理 数であると仮定して矛盾を導く」 方針をとります. 無理数についての問題を解くには次のことをよく用います。 「αが無理数 p q が有理数のとき p+ga=0⇒p=9=0」 これは90と仮定すると,α=P x+2y-2=x+2=0 ..(x,y)(22) (2)(i).mがいずれもy軸でないときを考える。このとき、この傾きを Pとし,Iが通る原点以外の格子点を(a, b) とすると,a0 で b P= (有理数) a である.同様にして,m の傾きをqとするとgは有理数である。 lm のなす角が60°であると仮定する。 このとき1.mx軸の正方向 からの回転角をそれぞれα,βとし、β-α=60°としてよい。 すると tano = p, tanβ=q であり, 8 tan (β-α)=tan 60° tan β tan or 1 + tan βtan r = √√√3 O 9-P 1+gp = √3 ① こと)。 tan6=2=(OPの傾き x だから傾きとは tan なのです. またこれからtan (0+π) tan もわかり ます。 1. は直交しない (60° をなす)のでpgキー1であり, ①の左辺は、 分子分 母ともに有理数だから有理数であり, が無理数であることに反する. (またはmy軸のとき、 1.m のなす角が60° であると仮定すると, tan 30°= により、他方の直線は y= この直線が通る xとなり, 原点を通る直線1, 2 があり、 傾きをそれ ぞれm1, m2 とします.x軸の正方向 からの回転角をそれぞれ 01, 02 とすると, 4 か らんへ回る角はB2-01 で 原点以外の格子点を (c.d) とするとd ¥0でV3 = となり,vが無 理数であることに反する. A 以上から題意が示された. (フォローアップ) tanf=tan (02-01)= tan ₂-tan 01 1 + tan O2 tan 01 = m2-m 1+m2m1 (ただしmm2 キ-1) 1. 一般に,xy 平面の2直線のなす角の公式は次のようになります 「xy 平面において交わる2直線y=mx+m,y=m2x+n2 のなす角を (001)とすると, 解答 (1) 直線が通る格子点を (x, y) とすると, x+1+√3 . y= yo-x+1+v 2 mm2-1 ならば mm2 キ-1ならばtan0= my-m2 1+m1m2 50 39-6 有理数 無理数, 2直線のなす角 6 座標平面上で,x座標, y 座標がともに整数である点を格子点と いう. 次の問いに答えよ. ただし, √が無理数であることを証明な しに用いてもよい. 1 (1) 直線 y=- x+1+√3が通る格子点をすべて求めよ. [山口大〕 以外にも格子点を通るとき, 1, m のなす角は, 60°にならないこと (2) 原点を通る2直線1, mについて考える. 1, m がそれぞれ原点 を証明せよ. PICCOLLAGE (イ)「有理数とは整数 p, q (0) と表される数」のことです(ここで 約分して約分数にしておくことも多い) これはいいですね。 具体 アプロチ

解決済み 回答数: 1
数学 高校生

命題の証明のところなんですけど、意味がわかりません💦誰か教えてください🙏🙏🙏

DO 項 3 本例題 43 対偶を利用した命題の証明 79 00000 文字はすべて実数とする。 対偶を考えて、次の命題を証明せよ。 (2)626 ならば 「| a +6|>1 または |a-b>3」 (1) x+y=2 ならば 「x≦1 または y≦1」 CHART & SOLUTION p.76 基本事項 6 対偶の利用 pomu 命題の真偽とその対偶の真偽は一致することを利用 (1)x+y=2 を満たすx, yの組 (x, y) は無数にあるから,直接証明することは困難であ る。 そこで, 対偶が真であることを証明し、もとの命題も真である, と証明する。 条件 x または y≦1」 の否定は 「x>1 かつy>1」 (2)対偶が真であることの証明には、次のことを利用するとよい。 A≧0, B≧0 のとき A≦B ならば A'≦B2 (p.118 INFORMATION 参照。) (1) 与えられた命題の対偶は 2章 6 =0 #0 とされる。 「x>1 かつy>1」 ならば x+y= これを証明する。 x>1, y>1 から x+y> +1 すなわち x+y>2 よって, x+y≠2 であるから, 対偶は真である。 したがって,もとの命題も真である。 (2) 与えられた命題の対偶は 「α+ 6≦1 かつ a-b≦3」 ならば2+62<6 これを証明する。 |a+6|≦1, |a-b≦3 から (a+b)2≦12, (a-b)2≦32 (a+b)2+(a-b)2≦1+9 ←pg の対偶は gp ←x>ay>b ならば x+y>a+b (p.54 不等式の性質) A²=A² ->1 よって ゆえに よって 2a2+62) ≦10 a+b25 ゆえに、対偶は真である。 したがって,もとの命題も真である。 ← ' + 625 と 5<6 から a2+62<6 ら選べ POINT 条件の否定条件, gの否定を,それぞれ,g で表す。 かつ または pまたはq かつ PnQ=PUQ PUQ=PnQ PRACTICE 43º 文字はすべて実数とする。 次の命題を, 対偶を利用して証明せよ。 (1)x+y>a ならば 「x>α-b または y>b」 (2)xについての方程式 ax+b=0がただ1つの解をもつならば α≠0 論理と集合

未解決 回答数: 1
数学 高校生

(3)の問題が答えを見ても、重なる点がどこになるかなど、イメージがつかずテ、トが解けないです💦教えてください🙇‍♀️よろしくお願いします

[数標準プラン100 (共通テスト対策) 問題92] (1)1辺の長さが2の正四面体 OPQR を考える。 辺OPの中点をMとし, OP = p, OQ=g, OR = とする。 R アイ アイ (i) MR= p+r, MQ= +gであり, ウ p.g=g.v=v.p= H である。 Q' (ii) MR.MQ- = オ であるから, ∠RMQ = α とすると, P cos α = である。 キ (2) 1辺の長さが2の正四角錐 O'ABCD を考える。 ただし, 正四角錐 O'ABCD の辺の長さはすべて等しいも 「のとする。 辺O'Aの中点をNとし, O'A=a, O'B=b, 0℃=cとする。 B A クケ サ (i) NB: = a+b, ND= -a-b+ccy), a c= ス である。 コ シ タチ (ii) NB.ND=センであるから,∠BND =β とすると, cosβ= である。 ツ (3)(1) 正四面体 OPQR と (2) の正四角錐 O'ABCD を 頂点 O, P, Q がそれぞれ 頂点 0′, A,B に重なるように正三角形の面を重ね合わせた立体を考える。 ただし, 点Rと点Cが,その正三角形の面に関して反対側にあるものとする。 このとき, ∠RMQ + ∠BND=テである。 したがって,この立体はトであることがわかる。 テの解答群 ④ π ① -62-3 % ② π 43-4 π ⑥ 35-6 の解答群 ⑩面体 ①八面体 ②七面体 ③六面体 ③ 2 πC ④ 五面体

回答募集中 回答数: 0
数学 高校生

等比数列の複利計算についてです。 (2)の解説がよく分かりません。1番は出来ました✌️ 指針から解答まで分からないので詳しく教えてください🙏

432 基本 例題 15 複利計算 年利率, 1年ごとの複利での計算とするとき, 次のものを求めよ。 (1)n年後の元利合計をS円にするときの元金丁円 (2) 毎年度初めにP円ずつ積立貯金するときの, n 00000 年度末の元利合計 S, 円 7 基本 指針 「1年ごとの複利で計算する」 とは, 1年ごとに利息を元金に繰り入れて利息を計算する ことをいう。 複利計算では,期末ごとの元金, 利息, 元利合計を順々に書き出して考え るとよい。 元金をP円, 年利率を (1)1年後 — 元金 P, とすると 利息 Pr 2年後 元金P(1+r), 3年後 元金P(1+r) 2, 利息 P(1+r).r 利息 P(1+r) or n年後 合計 P(1+r) 補足 前へ 利合 消し 問 ... 合計 P(1+r)2 合計 P(1+r) 毎年 合計P(1+r)" 元金 P(1+r)"-1, 利息 P(1+r)"-l.y (2)例えば,3年度末にいくらになるかを考えると 1年度末 2年度末 3年度末 1年目の積み立て …P→P(1+r) → P(1+r)→P(1+r)3 解答 2年目の積み立て P →P(1+r) → ・P(1+r)2 3年目の積み立て P → P(1+r) したがって, 3 年度末の元利合計は P(1+r)+P(1+r)2+P(1+r) ← 等比数列の和。 (1) 元金T円のn年後の元利合計は T (1+r)" 円であるから T(1+r)"=S よって T= S (1+r)" (2)毎年度初めの元金は、1年ごとに利息がついて (1+r) 倍となる。 よって年度末には, 1年度初めのP円はP(1+r)" 円, 2年度初めのP円はP(1+r)" 円, n 年度初めのP円は P(1+r) 円 になる。 したがって, 求める元利合計 S は n-1 Sn=P(1+r)"+P(1+1) +......+P(1+r) _P(1+r){(1+r)"-1} (1+r)-1 P(1+r){(1+r)"-1} = (円) r 右端を初項と考えると、 Snは初項P(1+r), 1+r, 項数nの等出 の和である。 が

解決済み 回答数: 1
1/849