学年

教科

質問の種類

数学 高校生

確率の問題です。 (2)の解説を読んでもいまいちピンとこず、止まってしまっています。 特に不等式の変形、そして成り立つabcの求め方が自分にとっては複雑に感じます。 飛ばしたほうがよいでしょうか? 知恵袋では、スマートで応用の効く求め方もありました。そこでの疑問があり 「a... 続きを読む

EX 332 次の問いに答えよ。 (1) 1/+1/21 -≧1 となる確率を求めよ。 a 大・中・小3個のさいころを同時に投げて、出た目の数をそれぞれa, b, c とする。 このとき [滋賀] a (2)/1/+1/2/ となる確率を求めよ。 (1)[1] a=1のとき bの目は1~6の 6通り [2] α=2のとき b=1,2の2通り 知恵袋に [3] α=3 のとき b=1の 通り a=4,5,6 のときも同様に1通りずつ [1], [2],[3] から, 求める確率は 1 1 1 -≥ である。 a 6 6 3 [1] c=3,4,5,6 のとき 結果はcの値にはよら ないので,2個のさいこ ろの目のみについて考え 別解ありればよい。 6+2+1×4=130 62 a,bは何であっても不等式が成り立つから, いずれも36通りずつ [2] c=2 のとき 1 a 12 を満たすα, b を求める。 a = 1, 2, 3 のとき 1=1 1=1 6から1/22/16 b≤6 a 1から言 c≧3 であるから 11 C M + ab VII a 11/11/13 から 2 a 11 1 また 1/13/1 13 12 1 +a≤3 6 +6≤6 Jei 6 b よって、すべてのbに対して 12/21/11/12が成り立ち、い ずれも6通りずつ a b 6=1,2,3,4の4通り a=4 のとき a=5のとき 6=1,2,3の3通り a=6 のとき [3] c=1 のとき (1)の結果から 12通り b=1,2,3の3通り [1],[2],[3] から, 求める確率は 36×4+(6×3+4+3+3)+12_184_23 63 216 27 27 1 IIV b 12 10 b

回答募集中 回答数: 0
1/284