学年

教科

質問の種類

数学 高校生

この問題の(2)の解答の(i)のところのやり方が違ったので、合ってるかみてほしいです!また、私のやり方が合ってたとしても解答の解法が1番すっきりしてて良いと思うのですが、どうしたら私のでなく解答の解法が思いつきますか?

y= 9 が有理数となって矛盾することか らわかります。これを利用するには、与式を無理数を含む部分と含まない (x) 部分に分けます。 0xy平面の2直線のなす角をとらえるには, 傾きとtan の加法定理を利用します。 まず, tan の定義を思いだしておきましょう. 座標平面で 点A(1.0) が原点を中心に角だけ回転し点 P(x, y) になるとき (動径 OP の角が という Ay P ですから、否定的にしか表現で 麺の証明は -C (否定 「〜でない」ことが簡単に背定で表現できないことが . x+2y-2-(x+2)√3 0 ことが多く、青 xyは整数(有理数)では無理数だから 理法によるのが普通です. したがって,「無理数であることの証明は、 有理 数であると仮定して矛盾を導く」 方針をとります. 無理数についての問題を解くには次のことをよく用います。 「αが無理数 p q が有理数のとき p+ga=0⇒p=9=0」 これは90と仮定すると,α=P x+2y-2=x+2=0 ..(x,y)(22) (2)(i).mがいずれもy軸でないときを考える。このとき、この傾きを Pとし,Iが通る原点以外の格子点を(a, b) とすると,a0 で b P= (有理数) a である.同様にして,m の傾きをqとするとgは有理数である。 lm のなす角が60°であると仮定する。 このとき1.mx軸の正方向 からの回転角をそれぞれα,βとし、β-α=60°としてよい。 すると tano = p, tanβ=q であり, 8 tan (β-α)=tan 60° tan β tan or 1 + tan βtan r = √√√3 O 9-P 1+gp = √3 ① こと)。 tan6=2=(OPの傾き x だから傾きとは tan なのです. またこれからtan (0+π) tan もわかり ます。 1. は直交しない (60° をなす)のでpgキー1であり, ①の左辺は、 分子分 母ともに有理数だから有理数であり, が無理数であることに反する. (またはmy軸のとき、 1.m のなす角が60° であると仮定すると, tan 30°= により、他方の直線は y= この直線が通る xとなり, 原点を通る直線1, 2 があり、 傾きをそれ ぞれm1, m2 とします.x軸の正方向 からの回転角をそれぞれ 01, 02 とすると, 4 か らんへ回る角はB2-01 で 原点以外の格子点を (c.d) とするとd ¥0でV3 = となり,vが無 理数であることに反する. A 以上から題意が示された. (フォローアップ) tanf=tan (02-01)= tan ₂-tan 01 1 + tan O2 tan 01 = m2-m 1+m2m1 (ただしmm2 キ-1) 1. 一般に,xy 平面の2直線のなす角の公式は次のようになります 「xy 平面において交わる2直線y=mx+m,y=m2x+n2 のなす角を (001)とすると, 解答 (1) 直線が通る格子点を (x, y) とすると, x+1+√3 . y= yo-x+1+v 2 mm2-1 ならば mm2 キ-1ならばtan0= my-m2 1+m1m2 50 39-6 有理数 無理数, 2直線のなす角 6 座標平面上で,x座標, y 座標がともに整数である点を格子点と いう. 次の問いに答えよ. ただし, √が無理数であることを証明な しに用いてもよい. 1 (1) 直線 y=- x+1+√3が通る格子点をすべて求めよ. [山口大〕 以外にも格子点を通るとき, 1, m のなす角は, 60°にならないこと (2) 原点を通る2直線1, mについて考える. 1, m がそれぞれ原点 を証明せよ. PICCOLLAGE (イ)「有理数とは整数 p, q (0) と表される数」のことです(ここで 約分して約分数にしておくことも多い) これはいいですね。 具体 アプロチ

解決済み 回答数: 1
数学 高校生

Focus Gold 数学Ⅱ 例題105 黄色マーカー部、Y=0のとき、グラフのどの条件のことをさしていますか?

の交点Pは,どのような図形を描くか. 3章 図形と方程式 例題 105 2直線の交点の軌跡 ( 1 ) mが実数値をとって変化するとき, 2直線 y=mx+8...... ① x+my=6..... ② (別解Ⅰ) ① ② ②よ 6-8m 6m+8 考え方 ①②の交点Pの座標を求めると, x=- 2 y 1+m² 1+m² となり、ここか した 解答 去してxyの関係式を導くこともできるが, 計算がやや大変ではある。 ここでは、交点をP(X, Y)として, 1, ②より [Y=mX +8 LX+mY= 6 この2式よりを消去して,XとYの関係式を導くことを考える 交点の座標をP(X, Y) とすると, Y=mX +8 ...... ①、 X+mY=6...... ②、 6-X (i) Y0 のとき,②より, m= ③ Y ③①'に代入して, Y = - 6-X ・X+8 より Y こうする 分母にくる Y=0 と Y'=6X-X2+8Y 場合分けを したがって, (X-3)2+(Y-4)²=25 ④より、た ただし, Y = 0 となる④上の点(0, 0) (60)は除く。 X+m0=6 (i) Y = 0 のとき,②より, X=(別解 2) wwwwww つまり、 X=6 ①'に代入して, 0=m・6+8より,m=-- 4 3 4 3 したがって, m=-- のとき 2直線の交点は m=- P (6,0)となる. に代入し よって, (i), (ii)より交点Pの描く図形は, 中心 (34) 半径50円 ただし、原点を除く. てみるとよい (道)より、( た点(6.0)) 描く図形に Focus 注 2直線の交点の軌跡を求めるには, 「媒介変数の消去」か 「図形の性質を調べる」 次ページの (別解1) では,計算が大変になるが, m (媒介変数) の消去の練習にもなるので,交点P (x, y) の座標より,x,yの関 係式を導いている,また (別解2)では,①の傾きは②の傾 きは 1で、m=-1 より ①と②は垂直に交わる m m かるので,求める交点Pの軌跡は, AB を直径とする円周上にあると考えら また、①,②はそれぞれ定点A(0, 8), B(6, 0) を通ることがわ 練習 105 *** (6-

解決済み 回答数: 1
1/86