学年

教科

質問の種類

数学 高校生

Aの座標が3a,3bなのはどうしてですか?

116 基本 例題 67 座標を利用した証明 (1) △ABCの重心をGとするとき, AB2+BC2+CA2=3(GA2+GB +GC)が 成り立つことを証明せよ。 CHART & THINKING y 基本 例題 68 p.112 基本事項 31 51 座標を利用した証明 座標を利用すると、 図形の性質が簡単に証明できる 場合がある。 そのとき、 座標軸をどこにとるか, 与 えられた図形を座標を用いてどう表すかがポイン トとなる。 そこで, あとの計算がスムーズになるよ うに、座標軸を定める ② 変数を少なく A(x1, y₁) B(x2,y2) (x+y+xy+x+a) C(x3,y2) 0 ↓辺BC をx軸上に。 y ★3点A(5,1 Dの座標を求 CHART & 「平行四辺形】 頂点の順序が いことに注意。 形のパターン Dの座標を求 2本の A(x1,y) ( 1 0 を多く くるように0 が多くなるようにとる。 1 問題に出てくる点がなるべく多く座標軸上に O B(x2, 0) C(x3, 0) を利用すると もっとよい方法は? 2つの頂点を原点に関して対称にとる 解答 残りの頂点 — 変数の文字を少なくする。 これらをもとに, 点 A, B, C の座標を文字でどう表すかを考えよう。 直線 BC をx軸に,辺BCの垂直 理由? ←10を多く 二等分線をy軸にとると, 線分三二a,36) BCの中点は原点0になる。 A(3a, 36), B(-c, 0), C(c, 0) ← ② 変数を少なく G(33 平行四辺形 [1] [1] 平 線分 D したが [2]平 線分 G(a,b) とすると, Gは重心であるから, 01 A(a, b) とすると, b B C となり計算が G(a, b) と表すことができる。 このとき AB2+BC2+ CA2 ={(-c-3a)+(-3b)2}+{c-(-c)}+{(3a-c)2+(36)2} =3(6a2+662+2c2) ・① (-c, 0) O (c,0) x 少し煩雑。 した 両辺を別々に計算して 比較する。 [3] = 線分 GA2+GB2+GC2 ={(3a-a)2+(3b-b)2}+{(-c-a)+(-b)2} +{(c-a)+(-b)2} =6α²+6b2+2c2 ①② から AB2+BC2+CA=3(GA2+GB2+GC2) 注意 更に都合がよくなる ようにと, A(0,36)など とおいてはいけない。この 場合, Aはy軸 (辺BCO 垂直二等分線) 上の点に 定されてしまう。 以上 PRACTICE 67° (1) ∠ABCの辺BCの中点をMとするとき, AB'+AC'=2(AM'+BM)(中線定理) が成り立つことを証明せよ。 (2)△ABCにおいて, 辺BC を 3:2 に内分する点をDとする。このとき, 3(2AB2+3AC2)=5(3AD2+2BD) が成り立つことを証明せよ。 P

解決済み 回答数: 1
数学 高校生

数2の高次方程式の問題です。 四角で囲んであるところの意味がわかりません。

基本 例題 63 2重解をもつ条件 00000 3次方程式 x+(a-1)x2+(4-α)x-4=0が2重解をもつように、 実数の 定数αの値を定めよ。 CHART & SOLUTION 3次方程式の問題 因数分解して (1次式)×(2次式)へもち込む x=1 を代入すると成り立つから, 与えられた方程式は (x-1)g(x)=0g(x)は2次式]の形となる。 ここで,「2重解をもつ」 のは次の2通りで、 場合分けが必要。 [1] 2次方程式g(x)=0が1でない重解をもつ。 [2] x=1が2重解→ g(x) = 0 の解の1つが1で,他の解は1でない。 解答 f(x)=x+(a-1)x2+(4-a)x-4 とすると 基本 61 f(1)=1+(a-1)・12+(4-α) ・1−4=0 よって, f(x) は x-1 を因数にもつから f(x)=(x-1)(x2+ax+4) 1 a-1 4-a -4 1 a 4 1 a 4 0 ■ゆえに, 方程式は (x-1)(x2+ax+4) = 0 したがって x1 = 0 または x2+ax+4= 0 この3次方程式が2重解をもつ条件は,次の[1] または [2] が成り立つことである。 [1] x2+ax+4=0 が1でない重解をもつ。 判別式をDとすると D=0 かつ 12+α・1+4=α+5=0 D=α2-16=(a+4)(α-4) 土でも重解 D=0 とするとα=±4 これはα+5≠0 を満たす。 [2] x2+ax+4=0 の1つの解が1, 他の解が1でない。9 x=1 が解であるから よって a+5=0 「このとき x2-5x+4=0 12+α・1+4=0 ゆえに a=-5 よって (x-1)(x-4)=0 これを解いて x=1,4 したがって他の解が1でないから適する。 別解 次数が最低の について整理する方 因数分解してもよい。 x-x2+4x-4+α(3 (1)(x2+4)+ax (x-1)(x2+ax+4 inf. 次のように考 よい。 [2] x2+ax+4=0 1β(1) の と係数の関係か 1+β=-a, β=4 は適する [1], [2] から, 求める定数 αの値は このとき a= a=±4,-5

解決済み 回答数: 2
1/1000