学年

教科

質問の種類

数学 高校生

この問題についてで、写真のことが成り立つので<BCM=<BCNとしてよいでしょうか?回答よろしくお願いします。

戦略 例題 座標平面の設定 ★★☆☆ AB=ACである二等辺三角形ABC を考える。辺 AB の中点を M とし, 辺 AB を延長した直線上に点Nを, AN:NB=2:1 となるようにとる。 このとき,∠BCM = ∠BCN となることを示せ。ただし,点Nは辺 AB 上にはないものとする。 AR (京都大) « Re Action 図形の証明問題は,文字が少なくなるように座標軸を決定せよ IB 例題 95 思考プロセス ・△ABC は AB AC の二等辺三角形 YA |対称性の利用 O ADJ A 対称軸をy軸に設定 ∠BCM と ∠BCN を考える BCをx軸上に設定して、 とすると、 M B C 0 x 関問 戦略 設定 2 直線 NC と MC の傾きを考える AN 95 解 直線 BC をx軸, 辺BCの中点を 原点にとる。 △ABC は AB AC であるから, A(0, 2a),B(-26,0), C(260) (a>0, 6 > 0) としても 一般性を失わない。 YA 34A 2a (8) M A(0, 4), B(-6, 0) のよう At に設定してもよいが,後で -2b BO (2) ① Mは線分ABの中点であり, N は 線分ABを2:1 に外分する点であ NO DA るから M(-b, a), N(-4b, -2a) 26 CABの中点Mを考えると M(-) 分数になってしまうか ら,Mの座標が分数とな らないようにした。 このとき,NC の傾きは m1 = 26-(-4) 36 0+(-2a) a A = 0-a a MCの傾き m2 は m2= 26-(-b) 3b よって, 2直線 NC と MCはx軸に関して対称であるから <BCM = ∠BCN 頭を (別解〕(座標を用いない証明) BM=α とおくと AB = 24, AN = 4a, AC=2a <BAC=0 とおくと, △AMCにおいて, 余弦定理により CM² = a² + (2a)2-2. a. 2acos = 5a² - 4a² cos BA 逆向きに考える ∠BCM = ∠BCN を示す。 CM:CN = MB:BN が示されればよい。 MB:BN=1:2より, CM:CN = 1:2 を示 したい。 また,△ANC において,余弦定理により11/07 CN2 = (4a)²+(2a)2-2.4a 2acos 08 A =20α²-16acost M FO 大 よって、CM:CN=1:4 より <BCM = ∠BCN CM:CN=1:28- したがって、角の二等分線と比の定理の逆により B C ② ① 練習 △OCD の外側にOCを1辺とする正方形 OABC と, ODを1辺とする正方形 このとき、 AD ⊥ CF であることを証明せよ。 (茨城大) 303 p.315 問題1

解決済み 回答数: 1
1/470