学年

教科

質問の種類

数学 高校生

黄色でマーカーを引いた所の意味が分からないので教えてください🙇🏻‍♀️⋱

基本 89 例題 52 関数の極限 (4) ・・・ はさみうちの原理 00000 [3x] x 次の極限値を求めよ。 ただし, [x] は x を超えない最大の整数を表す。 (1) lim (2) lim (3*+5*) 1 x18 0.82 項目 基本 21 指針 極限が直接求めにくい場合は、 はさみうちの原理 (p.82 ①の2) の利用を考える。 (1) n≦x<n+1 ( は整数) のとき [x] = n すなわち [x]≦x<[x]+1 よって [3x]≦3x<[3x]+1 この式を利用してf(x) [3x]≦g(x) x (ただしlimf(x) = limg(x)) となるf(x), g(x) を作り出す。 なお、記号 [ ]はガ ウス記号である。 x→∞ (2)底が最大の項5" でくくり出すと(+5 (1/2)^1^(1/2)+1}* 1 = = (1/3) の極限と {(12/3) +1} の極限を同時に考えていくのは複雑である。そこで. はさみうちの原理を利用する。x→∞ であるから, x1 すなわち 01/12 <1と考 えてよい。 CHART 求めにくい極限 不等式利用ではさみうち (1) 不等式 [3x]≦3x<[3x]+1が成り立つ。 x 解答 x>0 のとき,各辺をxで割ると [3x] [3x] 1 ≤3< + x x x [3x] 1 1 ここで,3< + から [3x] 3- x x x x よって 3-1[3x] ≤3 x x lim (3-1) =3であるから [3x] lim =3 x→∞ x はさみうちの原理 f(x)Sh(x)g(x) T limf(x) = limg(x)=α X-1 ならば limh(x)=α 888 2章 関数の極限 x-x (2) (3*+5*)*=[5*{( 3 )*+1}}*=5{(3)*+1}* x→∞であるから,x>10<<1と考えてよい。 x 底が最大の項5でく くり出す。 このとき{(1)+1}°<{(号)+1F <{(12) +1(*) 4>1のとき,a<b すなわち 1<{(1)+1}*<(1) +1 ならば A°<A lim x→∞ {(1/2)+1} =1であるから 1であるから (2) +1-1 lim +1>1であるか ら, (*) が成り立つ。 x→∞ よって lim("+5) -lim5{(2x)+1} =5・1=5 x→∞ 練習 次の極限値を求めよ。 ただし,[]はガウス記号を表す。 052 x+[2x] (1) lim x→∞ x+1 (/)+(2)72 (2) lim{(3)*+(3)*}* p.95 EX 37、

回答募集中 回答数: 0
数学 高校生

この問題教えて欲しいです! 有効数字が全然分からないです

1. 次の文中の( )に適当な言葉や数値, 記号を書き入れなさい。 国際的な単位の取り決めで定められた, 長さ 質量, 時間, 電流, 温度、物質量, 光度など7種の量を (①) といい、それぞれに対応して定められた単位を (2) という。 また、速さやエネルギー, 電圧など, (2) 組み合わせた単位を (3) という。 物理量は, 数値 × (4) で表す。測定値として意味のある数字を (5) という。 精度のよい測定ほど、 有効数字の桁数が (⑥)。 科学で扱う数値を, 4×10 の形で表したものを (7) という。ただし (8) A< (9) である。 例えば, 測定値 185mm は, 有効数字 (⑩) 桁で, 科学表記で は (①)と表す。 測定値 185.0mm は, 有効数字 (12) 桁で, 科学表記では (13) と表す。 測定値 0.0185m は 有効数字は (14) 桁 (15) と表す。 測定値どうしの掛け算・割り算では、 有効数字の桁数の最も ( 16 ) ものに、計算結果の桁数をそろえる。 例えば, 4.23cm (3桁)×6.3cm (2桁)=26.649 の計算の場合、 (17) 桁 にそろえて (18) cm 2。 また, 測定値どうしの足し算 引き算では, 有効数字の1番下の位が最も大きいも のに計算結果の位をそろえる。 例えば4.23m (小数第2位) +1.567m (小数第3位) 5.797mの計算の場 合, 小数第 (19) 位にそろえるので (20) となる。 ① 基本量 ② 基本単位 ③組立単位 11 8. (13) ⑤ 10 10 17 (18) 19 20

回答募集中 回答数: 0
数学 高校生

ガウスを不等式の中に入れてるのってどういう意味ですか?

基本 例題 23 数列の極限 (6) ・・・ はさみうちの原理 3 △ 45 ①①① (1) 実数x に対して[x]をm≦x< m+1 を満たす整数とする。 このとき, [102] lim 102m を求めよ。 (2) 数列{an) の第n項 α7 はn桁の正の整数とする。 このとき, 極限 [山梨大) logio an lim を求めよ。 72 [広島市大〕 基本21 指針 この問題も、極限が直接求めにくいので、はさみうちの原理を利用する。 (1) [x] をはさむ形を作る。 x]はガウス記号であり (「チャート式基礎からの数学 I+A」 p.121 参照) [x]≦x< [x]+1 が成り立つ。 これから (2) α は n桁の正の整数 10" 'Man<10" (数学ⅡI) (1)任意自然数nに対して, [102] 10°"z<[10%"z]+1 102-1< [102]≦102 1 [102] < 10²n 102n x-1<[x]≦x <[x]≦x<[x]+1 2章 ③数列の極限 2限 [102] をはさむ形。 から 解答 よって 1 limπ 201 102πであるから [102] lim π はさみうちの原理。 102n 12-00 (2) α は n桁の正の整数であるから 各辺の常用対数をとると 10"-1≦an<10" n-1≦10g10an<n 10g1010=n よって 1 log10 an <1 n n lim (1-1) =1であるから lim log10 an 1 はさみうちの原理。 12-00 n 7→80 注注意 はさみうちの原理を誤って使用した記述例 例えば、前ページの例題22の解答で, A 以降を次のように書くと正しくない答案となる。 0<<6 Aから n² 0<lim- <lim → 2 6 n =0 よって lim n2 =0 2 [説明] はさみうちの原理は 818 an≦cn≦bn のとき lima= limb = αならば limc=α →80 n00 これは, 「acn≦bn が成り立つとき, 極限lima, limb が存在し, それらがαで一致する ならば,{c}についても極限limc が存在し, それはαに一致する」という意味である。 72700 72100 において, 存在がまだ確認できていない極限lim を有限な値として存 上の答案では, 在するように書いてしまっているところが正しくない。 正しくは、 前ページの解答のA, B のような流れで書く必要がある。 n² 11-00271 練習 実数 α に対してαを超えない最大の整数を [α] と書く。 [ ]をガウス記号という。 23 (1) 自然数の桁数kをガウス記号を用いて表すと, k =[[ ] である。 (2)自然数nに対して3”の桁数を km で表すと, lim- kn 12-00 n "である。 [慶応大]

回答募集中 回答数: 0
数学 高校生

69の練習問題 途中式 解き方教えて欲しいです

y=3x+1 CHART 不等式の解 グラフの上下関係から判断 y=2|x+1|-|x-1とする。 解答 x-1のとき y=-2(x+1)-{(x-1)} ゆえに y=-x-3 -1≦x<1のとき y=2(x+1)-{-(x-1)} ゆえに x+1<0, x-1 < 0 2 B 01 x x+1≧0, x-1<0 同様にして (例2) [3] 数直線上に3をとると, 右の 大の整数は3であるから 注意 「αがx を超える」 とは とは 「αがxと等しく とである。 (例3)[-1.5], [-0.1] 数直線上に -1.5 をとる -1.5 を超えない最大の ② 1≦x のとき 同様にして [-1.5] [-0.11 y=2(x+1)-(x-1) <x+1>0, x-1≧0 ゆえに y=x+3 よって, 関数 y=2|x+1|-|x-1のグラフは図の① とな指針」 る。 一方, 関数 y=x+2のグラフは図の②となる。 図から, ①と②のグラフは, x<-1または-1≦x<1の 範囲で交わる。 ①と②のグラフの交点のx座標について 5 x<-1のとき, -x-3=x+2から x=- - 2 ①と②のグラフの交点 の x 座標を α, β(a<B) とすると, 求める解は ..... ★の方針。 2つの関数のグラフをか いて, グラフの上下関係 から不等式の解を求める。 [注意 [ -1.5] = -1 は間 これらの例から,[x]の xの値の範囲の対応を すと, 右のようになる 一般に,次のことが成 実数x n≤x x<a, B<xであるから, -1≦x<1のとき, 3x+1=x+2から したがって, 不等式2|x+1|-|x-1>x+2の解は α β の値を求める。 x=1/2 [x]= 性質 A を利用する 5 *<-. <* <x 2' 2 [参考] y=2x+1|-|x-1|は -x-3 (x <-1) y=3x+1(-1≦x<1) と表すことができる。 x+3 (1≦x) ①のグラフが ②のグラ フより上側にあるxの 値の範囲。 左の計算から、 5 Q= .B=1/2である。 例 y= [x] (-2 -29 -1- 0≤ x= よって, ガウス記号に 実 練習 次の不等式をグラフを利用して解け。 ③ 69 (1) x-1|+2|x|≦3 (2)x+2|-|x-1|>x 証明 [x]=c

回答募集中 回答数: 0
数学 高校生

丸で囲った3ってなぜくるのですか? またどこの3ですか?

132 をx 意。 さみうちの原理 [3x] (2) lim(3*+5x) / 「次の極限値を求めよ。 ただし, [x]はxを超えない最大の整数を表す。 > 極限が直接求めにくい場合は、はさみうちの原理 (p.21852) の利用を考える。 x (1) n≦x<n+1 (nは整数)のとき [x]=n すなわち []≦x<[x]+1 よって [3x]≧3x<[3x]+1 3< a lim 100 このとき X→∞ よって X→∞ (ただしlim f(x)=limg(x)) となるf(x), g(x) を作り出す。 なお、記号[]はガウ みうちの原理を利用する。 (2) スが最大の項でくくり出すと (359(20) +1-1(20) +12 (2) の極限と ² { ( ²³ ) * + 1} ²³ の極限を同時に考えていくのは複雑である。 そこで、 はさ CHART 求めにくい極限 不等式利用ではさみうち [3x] x 答 | | 不等式 [3x]≧3x<[3x] +1が成り立つ。x>0のとき,各辺 | [3x] 1 をxで割ると ¥3 x x 1 [3x] +1 から 3 [3x] x この式を利用してf(x) [3x]≧ g(x)/ x X10 x→∞であるから x> 1 すなわち0< − <1と考えてよい。 はさみからのすからどう lim X→∞ .. X>1>0 [3x] =3であるから 2 (3¹+5³) * = [5*{( ³ )* +1}} * = 5{(³)*+1}* *th5_1<{( ³ )* +1} * < ( ³ ) ** +1 lim p.218 基本事項 5. 基本105 ここで, 3-1 [3x] x =3 +11であるからパー =1 lim(3+5)* - lim 5{()*+1}*-5-1 =5.1=5 はさみうちの原理 f(x)=(x)=g(x) で limf(x)=limg(x)=α x→∞であるから,x>10<<1と考えてよい。 x {( ²³ ) * + ¹}* < { ( ³ ) * + ¹} * < { ( ³ ) *+1}...(*) <A>1028, a<b2518 A°A°である。 x-00 ならば limh(x)=α などわかんなのが 225 [I][2A] 次の極限値を求めよ。ただし、[ ]はガウス記号を表す。 [(²³)*+ ( ²³ ) } * 底が最大の項5*でくくり 出す。 /31 * " + 1>1 であるから, (*)が成り立つ。 4章 16 関数の極限 (p.231 EX100

回答募集中 回答数: 0
1/11