数学
高校生

69の練習問題 途中式 解き方教えて欲しいです

y=3x+1 CHART 不等式の解 グラフの上下関係から判断 y=2|x+1|-|x-1とする。 解答 x-1のとき y=-2(x+1)-{(x-1)} ゆえに y=-x-3 -1≦x<1のとき y=2(x+1)-{-(x-1)} ゆえに x+1<0, x-1 < 0 2 B 01 x x+1≧0, x-1<0 同様にして (例2) [3] 数直線上に3をとると, 右の 大の整数は3であるから 注意 「αがx を超える」 とは とは 「αがxと等しく とである。 (例3)[-1.5], [-0.1] 数直線上に -1.5 をとる -1.5 を超えない最大の ② 1≦x のとき 同様にして [-1.5] [-0.11 y=2(x+1)-(x-1) <x+1>0, x-1≧0 ゆえに y=x+3 よって, 関数 y=2|x+1|-|x-1のグラフは図の① とな指針」 る。 一方, 関数 y=x+2のグラフは図の②となる。 図から, ①と②のグラフは, x<-1または-1≦x<1の 範囲で交わる。 ①と②のグラフの交点のx座標について 5 x<-1のとき, -x-3=x+2から x=- - 2 ①と②のグラフの交点 の x 座標を α, β(a<B) とすると, 求める解は ..... ★の方針。 2つの関数のグラフをか いて, グラフの上下関係 から不等式の解を求める。 [注意 [ -1.5] = -1 は間 これらの例から,[x]の xの値の範囲の対応を すと, 右のようになる 一般に,次のことが成 実数x n≤x x<a, B<xであるから, -1≦x<1のとき, 3x+1=x+2から したがって, 不等式2|x+1|-|x-1>x+2の解は α β の値を求める。 x=1/2 [x]= 性質 A を利用する 5 *<-. <* <x 2' 2 [参考] y=2x+1|-|x-1|は -x-3 (x <-1) y=3x+1(-1≦x<1) と表すことができる。 x+3 (1≦x) ①のグラフが ②のグラ フより上側にあるxの 値の範囲。 左の計算から、 5 Q= .B=1/2である。 例 y= [x] (-2 -29 -1- 0≤ x= よって, ガウス記号に 実 練習 次の不等式をグラフを利用して解け。 ③ 69 (1) x-1|+2|x|≦3 (2)x+2|-|x-1|>x 証明 [x]=c
絶対値 グラフ利用

回答

まだ回答がありません。

疑問は解決しましたか?