学年

教科

質問の種類

数学 高校生

グレーのマーカーの部分を教えてほしいです。

重要 例題 55 関数の作成 図のような1辺の長さが2の正三角形ABC がある。 点PA が頂点Aを出発し,毎秒1の速さで左回りに辺上を1周す るとき,線分 AP を 1辺とする正方形の面積yを,出発後 の時間x (秒) の関数として表し、そのグラフをかけ。 B ただし、点Pが点Aにあるときは y=0 とする。 CHARTS OTTT- はは正方形の面積で APを1辺をするからな か→ x=2,4 (S) 平方の定理から求める。 3章 y=AP2 であり, 条件から,xの変域は 0≤x≤6 [1] x=0, x=6 のとき よって [2]0<x≦2 のとき y=x2 点Pが点Aにあるから 点Pは辺AB上にあって y=0 AP=x P x-4 [3] 2<x≦4のとき 点Pは辺BC上にある。 辺BCの中点をMとすると, BCAM であり よって, 2<x<3のとき BM=1 B-PM x-2 ると PM=1-(x-2)=3-x 3<x≦4のとき ここで AM=√3 PM=(x-2)-1=x-3 ミルガウス 7 関数とグラフ ゆえに, AP2=PM2+AM2 から y=(x-3)2+311] [4] 4<x<6 のとき 点Pは辺 CA 上にあり, PC=x-4, AP2=(AC-PC) から y=(x-6)² [1]~[4] から 0≦x≦2 のとき y=x2 2<x≦4 のとき y=(x-3)2 +3 YA 4 3 4<x≦6 のとき y=(x-6)2 グラフは右の図の実線部分である。 234 6 x ◆結局 2<x≦4 のとき PM=|x-3| 頂点(3,3), 軸 x=3 の放物線 {2-(x-4)}2=(6-x) 2 =(x-6)2 頂点 (6,0),軸x=6 の放物線 x=0, y=0 は y=x2 に, x=6, y=0 は y=(x-6)2 に含められる。 ④ 88-237 PRACTICE・・・ 55 1辺の長さが1の正方形ABCD がある。 点Pが頂点Aを出発し, 毎秒1の速さでA→B→C→D→Aの順に辺上を1周するとき, 線分APを1辺とす る正方形の面積yを,出発後の時間x (秒) の関数で表し,そのグラフをかけ。 ただし、点Pが点Aにあるときは y=0 とする。 []

未解決 回答数: 1
数学 高校生

黄色でマーカーを引いた所の意味が分からないので教えてください🙇🏻‍♀️⋱

基本 89 例題 52 関数の極限 (4) ・・・ はさみうちの原理 00000 [3x] x 次の極限値を求めよ。 ただし, [x] は x を超えない最大の整数を表す。 (1) lim (2) lim (3*+5*) 1 x18 0.82 項目 基本 21 指針 極限が直接求めにくい場合は、 はさみうちの原理 (p.82 ①の2) の利用を考える。 (1) n≦x<n+1 ( は整数) のとき [x] = n すなわち [x]≦x<[x]+1 よって [3x]≦3x<[3x]+1 この式を利用してf(x) [3x]≦g(x) x (ただしlimf(x) = limg(x)) となるf(x), g(x) を作り出す。 なお、記号 [ ]はガ ウス記号である。 x→∞ (2)底が最大の項5" でくくり出すと(+5 (1/2)^1^(1/2)+1}* 1 = = (1/3) の極限と {(12/3) +1} の極限を同時に考えていくのは複雑である。そこで. はさみうちの原理を利用する。x→∞ であるから, x1 すなわち 01/12 <1と考 えてよい。 CHART 求めにくい極限 不等式利用ではさみうち (1) 不等式 [3x]≦3x<[3x]+1が成り立つ。 x 解答 x>0 のとき,各辺をxで割ると [3x] [3x] 1 ≤3< + x x x [3x] 1 1 ここで,3< + から [3x] 3- x x x x よって 3-1[3x] ≤3 x x lim (3-1) =3であるから [3x] lim =3 x→∞ x はさみうちの原理 f(x)Sh(x)g(x) T limf(x) = limg(x)=α X-1 ならば limh(x)=α 888 2章 関数の極限 x-x (2) (3*+5*)*=[5*{( 3 )*+1}}*=5{(3)*+1}* x→∞であるから,x>10<<1と考えてよい。 x 底が最大の項5でく くり出す。 このとき{(1)+1}°<{(号)+1F <{(12) +1(*) 4>1のとき,a<b すなわち 1<{(1)+1}*<(1) +1 ならば A°<A lim x→∞ {(1/2)+1} =1であるから 1であるから (2) +1-1 lim +1>1であるか ら, (*) が成り立つ。 x→∞ よって lim("+5) -lim5{(2x)+1} =5・1=5 x→∞ 練習 次の極限値を求めよ。 ただし,[]はガウス記号を表す。 052 x+[2x] (1) lim x→∞ x+1 (/)+(2)72 (2) lim{(3)*+(3)*}* p.95 EX 37、

回答募集中 回答数: 0
数学 高校生

例121 (3)何故このように場合分けするのですか? 幅?についても何か教えていただきたいです

★★☆☆ 例題 121 ガウス記号を含む方程式 特講 S 次の方程式を解け。 ただし, [x]はx を超えない最大の整数を表す。 (1)[2x] = 3 (2)[3x-1] = 2x (3) [2x]-[x] = 3 (1) Action ガウス記号は, n≦x<n+1 のとき [x] = n として外せ 例題120 (1),(2)はガウス記号が1つ[x]=n のとき n≦x < n+1 として外す 場合に分ける 48217-2 (3)はガウス記号が2つ 幅1ごとに値が変わる 一般にこの部分で考えてみる ←[] 1 2 01 32 x 2 n [2x] => n+1/2n+1 3 ごとに値が変わる (ア)(イ) 思考プロセス 章 9 2次関数と2次不等式 = 3 ≦x<2 2 2x 2, 3 *>* 方程式の解は,不等式で 表される範囲になる。 ■ [3x-1] は整数である から, 2xも整数になる。 2x≦3x-1 より x≧1 3x-1 < 2x+1 より x<2 (1) [2x] = 3より, 3≦2x < 4 であるから ... (2)[3x-1] = 2x ① より, 2x は整数である。 ①より 2x≦3x-1 <2x+1 これを解くと 1≦x<2 。 4 2≦2x < 4 であり、 2x は整数より 3 よって x=1, 2 (3) [2x]-[x]=3・・・② とする。 1 (ア) n≦x<n+ (nは整数)のとき 2 2n≦2x<2n+1 であるから [2x] = 2n xを幅 1/2 で場合分けす る。 また,[x] = nであるから,②は2n-n=3x よって n=3 ゆえに 3≤ x < x</ (イ)n (イ) n+ n+ 2 2 ≦x< n +1(n は整数)のとき 2n+1≦2x<2n+2 であるから [2x] = 2n+1 また, [x] = nであるから,②は (2n+1)-n=3 よって n=2 5 ゆえに ≦x<3 2 5 (ア)(イ)より 12/21/12 01 1+ (1) [3x] = 1 121 次の方程式を解け。 ただし, [x] は x を超えない最大の整数を表す。 (2) 2x=[√5] (3) [2x+1]=3x (4) [3x]-[x]=1 217

未解決 回答数: 0
数学 高校生

この問題教えて欲しいです! 有効数字が全然分からないです

1. 次の文中の( )に適当な言葉や数値, 記号を書き入れなさい。 国際的な単位の取り決めで定められた, 長さ 質量, 時間, 電流, 温度、物質量, 光度など7種の量を (①) といい、それぞれに対応して定められた単位を (2) という。 また、速さやエネルギー, 電圧など, (2) 組み合わせた単位を (3) という。 物理量は, 数値 × (4) で表す。測定値として意味のある数字を (5) という。 精度のよい測定ほど、 有効数字の桁数が (⑥)。 科学で扱う数値を, 4×10 の形で表したものを (7) という。ただし (8) A< (9) である。 例えば, 測定値 185mm は, 有効数字 (⑩) 桁で, 科学表記で は (①)と表す。 測定値 185.0mm は, 有効数字 (12) 桁で, 科学表記では (13) と表す。 測定値 0.0185m は 有効数字は (14) 桁 (15) と表す。 測定値どうしの掛け算・割り算では、 有効数字の桁数の最も ( 16 ) ものに、計算結果の桁数をそろえる。 例えば, 4.23cm (3桁)×6.3cm (2桁)=26.649 の計算の場合、 (17) 桁 にそろえて (18) cm 2。 また, 測定値どうしの足し算 引き算では, 有効数字の1番下の位が最も大きいも のに計算結果の位をそろえる。 例えば4.23m (小数第2位) +1.567m (小数第3位) 5.797mの計算の場 合, 小数第 (19) 位にそろえるので (20) となる。 ① 基本量 ② 基本単位 ③組立単位 11 8. (13) ⑤ 10 10 17 (18) 19 20

回答募集中 回答数: 0
数学 高校生

ガウスを不等式の中に入れてるのってどういう意味ですか?

基本 例題 23 数列の極限 (6) ・・・ はさみうちの原理 3 △ 45 ①①① (1) 実数x に対して[x]をm≦x< m+1 を満たす整数とする。 このとき, [102] lim 102m を求めよ。 (2) 数列{an) の第n項 α7 はn桁の正の整数とする。 このとき, 極限 [山梨大) logio an lim を求めよ。 72 [広島市大〕 基本21 指針 この問題も、極限が直接求めにくいので、はさみうちの原理を利用する。 (1) [x] をはさむ形を作る。 x]はガウス記号であり (「チャート式基礎からの数学 I+A」 p.121 参照) [x]≦x< [x]+1 が成り立つ。 これから (2) α は n桁の正の整数 10" 'Man<10" (数学ⅡI) (1)任意自然数nに対して, [102] 10°"z<[10%"z]+1 102-1< [102]≦102 1 [102] < 10²n 102n x-1<[x]≦x <[x]≦x<[x]+1 2章 ③数列の極限 2限 [102] をはさむ形。 から 解答 よって 1 limπ 201 102πであるから [102] lim π はさみうちの原理。 102n 12-00 (2) α は n桁の正の整数であるから 各辺の常用対数をとると 10"-1≦an<10" n-1≦10g10an<n 10g1010=n よって 1 log10 an <1 n n lim (1-1) =1であるから lim log10 an 1 はさみうちの原理。 12-00 n 7→80 注注意 はさみうちの原理を誤って使用した記述例 例えば、前ページの例題22の解答で, A 以降を次のように書くと正しくない答案となる。 0<<6 Aから n² 0<lim- <lim → 2 6 n =0 よって lim n2 =0 2 [説明] はさみうちの原理は 818 an≦cn≦bn のとき lima= limb = αならば limc=α →80 n00 これは, 「acn≦bn が成り立つとき, 極限lima, limb が存在し, それらがαで一致する ならば,{c}についても極限limc が存在し, それはαに一致する」という意味である。 72700 72100 において, 存在がまだ確認できていない極限lim を有限な値として存 上の答案では, 在するように書いてしまっているところが正しくない。 正しくは、 前ページの解答のA, B のような流れで書く必要がある。 n² 11-00271 練習 実数 α に対してαを超えない最大の整数を [α] と書く。 [ ]をガウス記号という。 23 (1) 自然数の桁数kをガウス記号を用いて表すと, k =[[ ] である。 (2)自然数nに対して3”の桁数を km で表すと, lim- kn 12-00 n "である。 [慶応大]

回答募集中 回答数: 0
1/17