学年

教科

質問の種類

数学 高校生

微分法の接線の問題です。 写真2枚目の右上の「a≠0は極値をもつための条件」とありますが、なぜa=0だと極値を持つことができないのでしょうか?問題でa>0という条件がそもそもあるからだとしても、なぜわざわざa≠0と書いているのか分かりません! 教えて頂きたいです!🙇‍♂️

96 接線の本数 曲線 C:y=-x上の点をT(1,ピー1)とする。 〇 (1) 点Tにおける接線の方程式を求めよ. (2) 点A(a, b) を通る接線が2本あるとき, a, bのみたす関係式 を求めよ。ただし,a>0, b≠α-a とする. (3)(2)のとき、2本の接線が直交するようなα, bの値を求めよ。 精講 のパターン 3次関数のグラフに引ける接線の本数は,接点の個数と一致し ます、だから,(1)の接線に A(a, b) を代入してできるtの3次方 程式が異なる2つの実数解をもつ条件を考えますが,このときの 考え方は 95 注で学習済みです. 3) 未知数が2つあるので, 等式を2つ用意します。 で 1つは(2)で求めてあるので, あと1つですが,それが 「接線が直交する」 を式にしたものです。 接線の傾きは接点における微分係数(84) ですから、 2つの接点における微分係数の積 = -1 と考えて式を作ります. 解答 (1) f(x)=x-x とおくと, f'(x)=3x²-1 よって, Tにおける接線は, y-(t-t)=(3-1)(x-t) y=(3t2-1)x-2t3 (2) (1) の接線はA(a, b) を通るので 6=(3t2-1)a-213 2t-3at2+a+b=0 .....(*) (*) が異なる2つの実数解をもつので, g(t)=2t3-3at2+a + b とおくとき, y=g(t) のグラフが,極大値, 極小値をもち, (極大値)×(極小値) =0であればよい, g(t)=6t2-6at=6t(t-a) g'(t)=0 を解くと, t=0, t=α だから 186 (t,t³-t) A(a,b)) 95注 R!!

未解決 回答数: 1
数学 高校生

(2)と(3)が解説を読んでもなぜ異なる2つの実数解を持つという条件が必要かわかりません。 教えてください🙏

基礎問 150 95 接線の本数 3/ 曲線C:y=x-x 上の点をT(t, ピ-t) とする. (1) 点Tにおける接線の方程式を求めよ. 点A(a, b) を通る接線が2本あるとき, a, bのみたす関係式 を求めよ.ただし、a>0, b=d-α とする。 (3) (2)のとき、2本の接線が直交するようなα, bの値を求めよ. 精講 (2) 3次関数のグラフに引ける接線の本数は、 接点の個数と一致し ます. だから, (1) の接線にA(α, b) を代入してできるtの3次方 程式が異なる2つの実数解をもつ条件を考えますが,このときの 考え方は 94 注 で学習済みです. (3) 未知数が2つあるので, 等式を2つ用意します。 1つは(2)で求めてあるので,あと1つですが,それが 「接線が直交する」 を式にしたものです。 接線の傾きは接点における微分係数 (83)ですから、 2つの接点における微分係数の積=-1 と考えて式を作ります. 解答 (1) f(x)=x-x とおくと, f'(x) =3㎡²-1 よって, Tにおける接線は, y-(t³-t)=(3t²-1)(x-t) ∴.y=(3t2-1)x-2t3 (2) (1) の接線は A (a, b) を通るので b=(3t²−1)a-2t3 ∴.2t3-3at2+a+b=0 •••••• ......(*) (*)が異なる2つの実数解をもつので, g(t)=2t-3at2+a+b とおくとき, y=g(t) のグラフが、極大値、極小値をもち, (極大値)×(極小値)=0 であればよい. 94 注 g'(t)=6f2-6at=6t(t-a) g'(t)=0 を解くと, t=0, t=α だから 185 y=x²-x| 2.05./000 A(a,b){ a≠0 (909(a)=0) b=d-a, a>0 だから、a+b=0 (3) (2) のとき(*) より, t2 (2t-3a) = 0 参考 ポイント 2本の接線の傾きはf'(0),(2) だから,直交する条件より 13a 150 (0) (22)=-1 (− 1)(²77a²-1)=-1 a²= 8 27 a>0 より α =- 2√6 9 a=0 演習問題 95 [(a+b)(b-a³+a)=0 . b=. 2√6 9 3次関数のグラフに引ける接線の本数は 接点の個数と一致する <a≠0 は極値をもつ ための条件 3次曲線Cの変曲点 (88) における接線をひと するとき, 476519 斜線部分と変曲点からは1本引ける 実は、3次関数のグラフに引ける接線の本数は以下のようになるこ とがわかっています. 記述式問題の検算用やマーク式問題で有効で す。 ・Cとl上の点(変曲点を除く)からは2本引ける 青アミ部分からは3本引ける 151 曲線 y=x-6.x に点A(2, p) から接線を引くとき、次の問いに 答えよ. (1) 曲線上の点T(t, ピー 6t) における接線の方程式を求めよ. (2) pt で表せ. (3) 点Aから接線が3本引けるようなかの値の範囲を求めよ. 第6章

未解決 回答数: 1
数学 高校生

なぜ赤で囲われたところのように導けるのですか?

可礎問 150 第6章 95 接線の本数 曲線C:y=-x 上の点を T(t, f-t) とする. (1) 点Tにおける接線の方程式を求めよ. (2) 点A(a,b) を通る接線が2本あるとき, a, bのみたす関係式 を求めよ.ただし, a>0, b=α-a とする. (3) (2) のとき, 2本の接線が直交するようなα, b の値を求めよ. 精講 (2) 3次関数のグラフに引ける接線の本数は、接点の個数と一致し ます.だから, (1)の接線に A (a, b) を代入してできるtの3次方 程式が異なる2つの実数解をもつ条件を考えますが,このときの 考え方は 94 注で学習済みです。 (3) 未知数が2つあるので,等式を2つ用意します。 1つは (2)で求めてあるので,あと1つですが,それが「接線が直交する」 を式にしたものです. 接線の傾きは接点における微分係数 (83) ですから, 2つの接点における微分係数の積=-1 と考えて式を作ります. 解答 (1) f(x)=x-x とおくと,f'(x)=3x²-1 よって, Tにおける接線は, y−(t³—t)=(3t²-1)(x− t) ∴.y=(3t2-1)x-2t3 (2) (1) の接線は A (a, b) を通るので b=(3t²−1)a-2t3 :. 2t³-3at²+a+b=0___······(*) (*)が異なる2つの実数解をもつので g(t)=2t3-3a2+a+b とおくとき, y=g(t) のグラフが,極大値、極小値をもち, (極大値)×(極小値)=0 であればよい. 94 注 g'(t)=6t2-6at=6t(t-a) g'(t)=0 を解くと, t = 0, t = a だから 85 y=x³- A(a,b) f (t,t³-t)

回答募集中 回答数: 0