学年

教科

質問の種類

数学 高校生

この問題が分かりません💦😭😭 Bが当たる確率を求める時は、 Bが1回目か2回目に当たるという言い方なのに、 Aが当たる確率を求める時は1回目に当たる確率と2回目に当たる確率を分けて考えているんですか? 教えてください🙇‍♀️🙇‍♀️

やや複雑なくじ引きの確率 要 例題 61 当たり3本,はずれ7本のくじをA,B2人が引く。 ただし, 引いたくじはも とに戻さないものとする。 まずAが1本引き、はずれたときだけがもう1本引く。次にBが1本引き, はずれたときだけBがもう1本引く。このとき, A,Bが当たりくじを引く確 P(A), P(B) をそれぞれ求めよ。 [類 大阪女子大] 基本 54 CHART & SOLUTION 複雑な事象の確率 排反な事象に分解する Bが当たりくじを引くには,次の3つの場合がある。 [1] Aが1回目で当たり,Bが1回目か2回目に当たる。 [2] Aが1回目ははずれて, 2回目で当たり,Bが1回目か2回目に当たる。 [3] Aが1回目も2回目もはずれて,Bが1回目か2回目に当たる。 本問のように複雑な事象については、変化のようすを 樹形図で整理し,樹形図に確率を書 き添えると考えやすい。 MH00 A Aが 1回目で当たる確率は Aが1回目ではずれ, 2回目で当たる確率は 1x= 7 10 9 30 これらの事象は互いに排反であるから 3 7_16_8 10 30 30 15 P(A)=- + 3 10 7 10 [1] [2], [3] は互いに排反であるから 9(A)¶ 7 P(B) = 3 (2+ 2 × 2) + 2) × 2 (3) 3/262) + 109 9 10 98 8 5 6/3 + 98 8 × Bが当たりくじを引くには,次の3つの場合がある。 [1] Aが1回目で当たり,Bが1回目か2回目に当たる [2] Aが1回目ではずれて, 2回目で当たり,Bが1回目 か 2回目に当たる (3)(A)+(3)(A) [3] Aが2回ともはずれて, Bが1回目か2回目に当たる [2]xO- Ana) 8 + 7/7 8 13 3 120 10 15 06- 当たるときを ○, はずれる ときをxとすると -- A B [1] JE 3 10 73 10 9 [3] xx- BO 7 6 10 9 2 9 XO 1/2 - 1/1/0 7.2 98 X 8 3-8 62 87 53 87 2章 6 条件付き確率,確率の乗法定理,期待値

回答募集中 回答数: 0
数学 高校生

静大工学部の数学の大問一つの採点をお願いします!!!(100点満点で) それと写真のオレンジの〰︎部分で第1次導関数を求めるために2x-1で割らないといけないと思うのですが、この時2x-1≠0であると書いて確認をしないといけませんよね?その時の記述がどうしてもわからないので... 続きを読む

(1) 227900-905-19w-903=8utzBスgleodt +S39wde 190-903= faut2XBJalt- 2Btgedt+Rblt -2290-9os こ 8u +2X E9e0-90] -284glandt t6getodt-2Xgorget ニ fw-29dtt S3giaobt よって-1900-91013= 800+ S69cdt -2Jtgididt-0 (2) fw= 423-5X +2人+f00 ここでよ0は定数であるためd0=12X-10人t2=2(3X-U122-1) fwこ0とすると ここでよのは3次関数であり、どの保数はDより大きい ため根込形は右の12のとうにちる このとき極小値は出でとる (まくまより) よってfはFAX-SX+tdw=tio) そ+f10)ニ 、f10:2 よてw=478-52 +2入t2 送にんt0-2のときfん=23t-り(22-),80=00とE す。であり、下の土醤減表よりよいはたしかに極み値 4をとまでもつ。 したダらてよんこ4x-5パ+2X+2 ト~1ま Ht10|- よuつ格大 ソ「極小1 次に一もg0-903:da-2539(tidt +J gar dt gu=-dw.+21519hde -Bg dt tgo1 AV H へ 2 0 g0=-6c0+229 イ 22-リダ0#c0=2(30-0(2X-) 父は04とき g0=2(30-) このとき両辺を種めして 9w=16X-2)dX = 3X-21+C (Cは種6) またのに入こ0を代入して 3 96dt=-fw=-2 J6 34-2ktC)dt=-2 [ポーズヤく大了るニー2 8-4+2C=-2 2C--62C-3 Aよってg0:3と-2X-3 ノ人上より)み一-せ入 90:3パ-22-3 4

回答募集中 回答数: 0