学年

教科

質問の種類

数学 高校生

棒全部から下がわからないです。

□130 太郎さんと京子さんは,命題の証明に関する次の問題について話している。 【問題】 a b は実数とする。 このとき, 次の命題を証明せよ。 活用間 131 文 「a +6≦2 ならば, a ≦1 または 61である。」 小 太郎:この命題の対偶は証明できそうだね。 た 京子:そうだね。 この命題の対偶はアならば,イ」になる。 太郎: 対偶を証明する以外に,この命題を証明する方法はないかな。 京子:次のように考えてみたらどうだろう。 α+6≦2 のとき,a≦1であ るなら,この命題の結論は真になるから,この場合は考える必要がな い。 a+b≦2 で, さらにウであるときに, エであることを 証明すれば十分である。 京子 太郎 京子 太郎 : 確かにそうだね。 それなら,次のようにして証明できる。 【太郎さんのノート】 a + b≦2 より b≤2-a ここで,ウ であるとき したがって, ウ であるとき, エ となる。 (1) に当てはまるものを、次の各選択肢のうちから一つずつ選べ。 ア の選択肢 ⑩ a ≦1 または 6≦1 ① a ≦ 1 かつ 6 ≦1 ② a > 1 または 6>1 ③ a > 1 かつ 6>1 の選択肢 ⑩ a + b 2 である ① a+b>2 である ウ オに当てはまるものを、次の各選択肢のうちから一つずつ選べ。 選択肢 ⑩a > 1 ① a ≦1 I の選択肢 ⑩6 > 1 ① b≦1 の選択肢 ⑩ -α <-1 ① a ≧ - 1

回答募集中 回答数: 0
数学 高校生

(2)がよく分かりません💦 どうして2と5が出てくるんですか?

Think 例題 276 循環小数法(2) ) 4 整数の性質の活用 581 6桁の循環節をもつ循環小数 A=0abcdef を3倍すると, 6桁 * * * * 循環節をもつ循環小数 0.bcdefa になるような最小のAを求めよ. n 101 (2) 3 6 1より大きくより小さい分数が有限小数になるような正の 整数nをすべて求め 考え方 (1) 循環小数Aを10倍すると, a,bcdefa となる。 14=0.abcdef abcdef abcdef...... 10A a.bcdefa bcdefa bcdefa...... m n こうな数のときかを考える. (p.580 解説参照) (2) 分数が有限小数になるのは,既約分数に直したときの分母の素因数がどのよ (1)条件より また, 3A=0.bcdefa 10A a.bcdefabcdef.... (1)これより, 10A-3A を計算して これら10A=a.bcdefabcdef・・ T =) 3A=0.bcdefabcdef 7A=a したがっ したがって, Am① 循環節が消えるように Aを10倍する。 10A と3A の小数点以 下が同じになる. 合 ここで,0<A<1,0<3A<1 より <A</1/3Aの値の範囲 ① より 01/13 したがって, <a< ①より<</ aは整数 (0≦a≦)より,a=1,2s) よってこのうち、 最小の循環小数は α=1のときみ で、 A== 0.142857 7 63 (2)1/13より。 322 8<n<18 3n 4 3333333 33333333 分数を小数で表したとき, 有限小数になるのは,既 約分数に直したときの分母が2と5以外に素因数を もたない場合に限られる方から小さい方を引くと 8<<18 の範囲の正の整数nでこの条件に合う のは,分子が6,すなわち, 2×3であることから, 分 22×3-12, 3×5-15, 2-16 6 3 6 Focus 館 15 16 5 12 2 人 2 6 3 = 5' 16 15 8 第9章 ← 既約分数の分母の素因数が25のみ 既約分数が有限小数になる 276 このとき、もとの自然数のうち最小のものを求めよ。 m ある自然数の逆数を小数で表すと3桁の循環節をもつ循環小数0.abc となる.

回答募集中 回答数: 0
数学 高校生

数Ⅲ 基礎門40(3) 解説を読んでも理解出来ませんでした💦詳しく教えてください🙇‍♀️

68 第3章 40 逆関数 (2)とするとき。 次の問いに答えよ。 (y=f(x)の逆関数y=f(x) を求めよ.バー) ② 曲線 C:y=f(x) と曲線 Ca:y=f'(x) が異なる2点で交わる ようなαの値の範囲を求めよ. (3) C. の交点の座標の差が2であるとき, aの値を求めよ。 〈逆関数の求め方〉 (012) ( y=f(x)の逆関数を求めるには,この式を x=(yの式)と変形し, xとy を入れかえればよい 〈逆関数のもつ性質〉 I. もとの関数と逆関数で,定義域と値域が入れかわる eto Ⅱ. もとの関数と逆関数のグラフは, 直線 y=x に関して対称になる 逆関数に関する知識としてはこの3つで十分ですが,実際に問題を解くとき 〈逆関数のもつ性質〉を上手に活用することが必要です。 この基礎問では,IIが ポイントになります。 解答 (1)y=√ax-2-1 とおくと, √ax-2=y+1 よって, y+1≧0 より,値域は y≧-1 ここで,両辺を2乗して, 1大切!! ax-2=(y+1)2 . a x=1/2(y+1)+1/2 (y-1) 2 a *>, ƒ³¹(x) = 1½ (x+1)²±²² (x≥−1) a a 【定義域と値域は入れ かわる 注 「定義域を求めよ」とはかいていないので,「x≧-1」は不要と思う 人もいるかもしれませんが、xの値に対してyを決める規則が関数で すから、xの範囲,すなわち, 定義域が「すべての実数」でない限り は,そこまで含めて「関数を求める」と考えなければなりません. ey=f(x)とy=f(x)のグラフは、凹凸が異なり,かつ,直線

回答募集中 回答数: 0
数学 高校生

数Ⅲ 基精 40(2) Y=f(x)とY=f^−1(x)の凹凸が異なりかつY=Xに関して対象というのはどのように判断すれば良いのでしょうか??🙇🏻‍♀️

第3章 いろいろな関数 問 68 40 逆関数 f(x)=var-2-1 (a>0x とするとき, 次の問いに答えよ、 f(x)の逆関数y=f(x) を求めよ. ② 曲線 C:y=f(x) と曲線 C2y=f(x) が異なる2点で交わる ようなαの値の範囲を求めよ. (3) C,Cの交点の座標の差が2であるとき, αの値を求めよ。 講 <逆関数の求め方〉 y=f(x)の逆関数を求めるには,この式を x=(yの式)と変形し, xとy を入れかんよい 〈逆関数のもつ性質〉 I. もとの関数と逆関数で,定義域と値域が入れかわる Ⅱ. もとの関数と逆関数のグラフは, 直線 y=x に関して対称になる <逆関数のもつ性質〉を上手に活用することが必要です. この基礎問では,I 逆関数に関する知識としてはこの3つで十分ですが,実際に問題を解くとき ポイントになります。 リーェに関して で交わる」こと fy-f(x) E よって、 2次 すなわち、エ 範囲で異な 求める。 そこで、 この2次 ( I A a>0. : a (3) (2) の B- a (別解) (1)y=√ax-2-1 とおくと, √ax-2=y+1 よって, y+1≧0 より 値域は y≧-1 ここで,両辺を2乗して, ポ 1大切!! ax-2=(y+1)2 .. X=- x = 1 (y+1)²+²² (y≥ −1) 定義域と値域は入れ かわる 演習問 a a £ɔT, ƒ¯¹(x)=±±²(x+1)²+²±²² (x≥−1) 2 a 注 「定義域を求めよ」とはかいていないので,「r≧-1」は不要と思う 人もいるかもしれませんが,xの値に対して」を決める規則が関数で すから、この範囲,すなわち, 定義域が 「すべての実数」でない限り は、そこまで含めて 「関数を求める」 と考えなければなりません。 (2)y=f(x)とy=f(x) のグラフは,凹凸が異なり,かつ,直線

回答募集中 回答数: 0
数学 高校生

(2)で(1)の不等式をどう生かしたのか、 解説の一連の不等式の流れがよくわかりません。

14 不等式の証明/拡張した形 (ア) (1) yが実数のとき, 2 (2) a, b, c が実数のとき, x+y\2 であることを証明せよ. であることを証明せよ。 a²+26² + c² = (a+b+c)². (イ) (1) ||<1, y|<1のとき, zy+1>æ+yを証明しなさい。 (立命館大文系) (2)また,(1)を用いて,|x|<1,|y|<1,|z|<1のとき,ry+2+y+zを証明しなさい。 (1)を活用する (岐阜経済大) (2) が (1) を拡張したような形の式を証明するときは (1) を利用して(2)を示 すことをまず考えよう. 本間 (ア)の場合,226262(イ)の場合, zyz(ry)zとして,(1)に結び つける. 2+2btc 解答 4 2 (ア) (1) (左辺) (右辺)= = {2(x²+ y²)-(x+y)²)=(xy)²≥0 1/2++ 46+20) となるから, 証明された. (2) (1)の不等式を用いると, b2+c2 (左辺)= ・+ 2 2 2 1)= 1½ (a² + b² + b² + c² ) = {(a+b)² + (b+c)"} (1)の不等式は, 02+02 0+2 2 2 ということ. a+b b+c + なお, (2) は, 平方完成で直接 a+b 2 2 a+2b+c I= y= 2 4 2' (1)を利用 (イ) (1) (左辺) - (右辺) =ry-x-y+1 =(x-1)(y-10 (x < 1, y<1だから) 示すこともできる。 16 { (左辺) (右辺)} =4(α2+262+c2)-(a+2b+c)2 =3a2+462+3c2 --4ab-4bc-2ca =462-4(a+c) b b+cとして 2 となるから, 証明された. +3a2-2ac+3c2 (2) w=xyとおくと, |x| <1,|y|<1により, |w|<1である。 よって, =4(6-a+c)²+ +2(a-c)2≥O 2 (1)を用いると,wz+1>w+z :.xyz +1>xy+z 各辺に1を加え, yz+2> (xy+1)+z 右辺に (1) を使い, ryz+2>(xy+1)+z>(x+y+z となるから, 証明された. 14 演習題 (解答はp.29) (ア) p. 9. rをいずれも正数とする. (1) XY-X-Y +1 を因数分解しなさい。 HENDER BIG (2)2+2-22-1の大小を比較しなさい . (3)2 +2 +2'320+9+r-1の大小を比較しなさい。 (イ) 次の(1),(2) を証明せよ. (龍谷大文系) (1)とき I y 1+x 1+y (2) すべての実数a,bについて, la+bl 1+a+b |a|+|6| 1+|a|+|6| (岐阜聖徳学園大) (ア) (3)では、 2D+g+r=2(D+q)+ と見る。 (イ)一般に. |a|+|0|≧|a+01 が成り立つ。 21

回答募集中 回答数: 0
数学 高校生

マーカーを引いた部分がよく分かりません 詳しく教えていただけると有難いです💦

基礎問 68 第3章 いろいろな関数 40 逆関数 f(x)=ax-2-1 (a>0.22)とするとき、次の問いに答えよ。 ((1) y=f(x)の逆関数 y=f(x) を求めよ。 エーエ (2) 曲線 C:y=f(x) と曲線 C2y=f-' (z) が異なる2点で交わる ようなαの値の範囲を求めよ. (3) C1, C2 の交点のx座標の差が2であるとき, αの値を求めよ。 精講 〈逆関数の求め方〉 y=f(x) の逆関数を求めるには,この式を x=(yの式)と変形し,xとyを入れかえればよい 〈逆関数のもつ性質> Ⅰ. もとの関数と逆関数で, 定義域と値域が入れかわる Ⅱ. もとの関数と逆関数のグラフは,直線 y=x に関して対称になる 逆関数に関する知識としてはこの3つで十分ですが,実際に問題を解くとき 〈逆関数のもつ性質〉を上手に活用することが必要です。この基礎問では,IIが ポイントになります。 解答 (1) y=√ax-2-1 とおくと, √ax-2=y+1 リーェに で交わる ry-f よって すな 範囲 求め そこ この (3) よって, y+1≧0 より, 値域はy≧-1 ここで,両辺を2乗して 大切!! ax-2=(y+1)2 . x=11 (y+1)²+² (y≥−1) a よって、f(x)=1/2(x+12+2/2/(x-1) a a 【定義域と値域は入れ かわる 注 「定義域を求めよ」 とはかいていないので, 「x≧-1」は不要と思う 人もいるかもしれませんが,xの値に対して」を決める規則が関数で すから、xの範囲, すなわち, 定義域が「すべての実数」でない限り は、そこまで含めて 「関数を求める」 と考えなければなりません. (2) y=f(x)とy=f(x)のグラフは,凹凸が異なり,かつ,直線 253

回答募集中 回答数: 0
1/11