数学 高校生 約12時間前 数II 積分の問題です。 メジアン新課程の解答冊子を持ってる方いらしたら送ってほしいです もしくは解説していただけると助かります *281 3次の整式f(x)はSx_f(t) dt=x を満たすとする。f(x) を求めよ。 +3 22 [18 学習院大] 未解決 回答数: 1
数学 高校生 約20時間前 314の(イ)が分かりません。解説を見ると距離dを求めるとのことでした。なぜdを求めるとaの値が出てくるのか、解説お願いしたいです。 314 直線 l (a-4)x+4y-a-4=0(aは実数)は,αの値にかかわらず,あ る定点を通り,その座標は , a= である。 また, lが円 x2+y2=1 に接すると である。 〔21 名城大〕 解決済み 回答数: 1
数学 高校生 1日前 この問題を教えてください! 最初にx^2の係数が0になるときとならないときに場合分けするのはわかったのですが、その後の解の種類を判別するところでつまづいてます。 なにとぞよろしくお願いします🙇 64 82 xの方程式 (m2-1)x2+2(m-1)x+2=0の解の種類を判別せよ。 未解決 回答数: 1
数学 高校生 1日前 見にくいですけど2枚目が答え&解説になってます! 何度読んでもわからないので解説お願い致します🙇♀️ (与) 1.7 実数a, b,cが a+b+c=2,a2+62 + c2 = 8, abc = -3 をみたすとき,次の値を求めなさい。 ab(a+b)+bc(b+ c) + ca(c+a) 400 未解決 回答数: 1
数学 高校生 1日前 これで答えが合っているか教えてください!よろしくお願いします。 24 公式を利用したいろいろな角の三角関数 [709数学Ⅱ 練習14] sin 19 11, cos (1) tan 2.0 の値を,それぞれ求めよ。 -T, dir. 600(\) 3 (+) in T 3 of (- 14/7 ) = - cos (7-12) Co T 100年 - √2 4 tan 2012 - Tan (276 12 3 = tan 600 45 2 L --B 解決済み 回答数: 1
数学 高校生 4日前 どのような変形ですか 363 (1) 方程式の両辺は正の数であるから,2を 底とする対数をとると So 20100 log2 (9.2*) = log23* Olog232 (log23-1)x=210g23 or 201 すなわち よって S(10 log232+x=xlog23 したがって x= 2log 23 201>18- log23-1 解決済み 回答数: 1
数学 高校生 4日前 数2の三角関数の問題です。(2)~(4)の問題の解説をお願いします。 2002 のとき,次の方程式, 不等式を解け。 (1) sin sin(-)--(1), 6 (2) (3) tan (0-1) >1 (4) 6 3. os (20+17) = √3 3 sin (20+7) ≤ -1 6 2 回答募集中 回答数: 0
数学 高校生 4日前 数Ⅱ三角関数の不等式です!解答のsinθ≦0、 2分の1≦sinθとなる式変形が分かりません。教えてください🙏 練習 0≦<2のとき, 次の方程式, 不等式を解け。 ③ 145 (1) 2cos20+cos0-1=0 (2) 2cos20+3sin0-3=0 (3) 2cos20+sin0−2≦0 (4) 2sin Otan0=-3 p.240 EX 89 解決済み 回答数: 1
数学 高校生 4日前 数2の問題です。この2問が分からないので解説して欲しいです。答えは画像2枚目に載っています。 9 次の問いに答えよ。 (4点×2) (1) 点 (8,3)と直線2x-y+ 2 = 0 の距離を求めよ。 (2)2点(-1,3) (1, -1) を直径の両端とする円と、y軸との交点の座標を求めよ。 解決済み 回答数: 1
数学 高校生 4日前 採点と間違った問題の解説をお願いしたいです。 よろしくお願いします。m(_ _)m 和7年度 数子 2単位 1 加法定理を用いて,次の値を求めよ。 (1) sin 105° aim(45+60= 左 44 (3) sin 15° 4in (4530) Ext =16-12 4 (2) cos 105° cos (ase 60°)-[2-16 (4) cos 15° 4 cos (46°-30°) = 6152 (5) sin 75° Gin (450+30) = 86482 (6) cos 75° cos (45° 30°) = 16-12 (7) tan 105° tan (iso+60)= (9) tan 75° Tan (49°43007 (レオ)() (8) tan 15° tan (45-30°) (10) tan 75° (3-3)2 (るな)(3F) 2 半角の公式を用いて, 次の値を求めよ。 (1) sin 22.5° (2) cos 22.5° 552 450 52 ・(-costs =2 (3) tan 22.5° tanzas 4 tan 22.5 (2F) 2 2F(2) 4-4F12. 4-2 tanzz.s tan22513-2F 963 9:3 24/2005 22.5-242 4 回答募集中 回答数: 0