学年

教科

質問の種類

数学 高校生

この別解の途中式が知りたいです。 何度しても答えと違う式が出てきてしまって😿😿

172 重要 例題 1082円の共通接線 00000 C:x2+y2=4と円Cz:(x-5)'+y2=1の共通接線の方程式を求めよ。 指針 1つの直線が2つの円に接するとき,この直線を2円の 共通接線という。 共通接線の本数は2円の位置関係によって変わるが,この 問題のように、2円が互いに外部にあるときは,共通内接線 と共通外接線 がそれぞれ2本の計4本がある。 本 共通内線 また、共通接線を求めるときは, 共通外接線 と考えて進めた方がらくなことが多い。 C上の点(x1,y) における接線 xix+yiy=4円 C2 にも接する yA 上の接点の座標を (x1, y1) とすると 2+y^2=4 ...... 解答 に対する 接線の方程式は xx+yiy=4 ...... ② 2 C1 C2 直線 ②が円 C2に接するための条件は,円C2の 中心 (5,0) 直 ②の距離が,円 C2 の半径1 -2 O 2 4 16 -2 に等しいことであるから |5x1−4| =1 ① を代入して整理すると |5x1-4|=2 よって 5x1 -4 = ±2 6 したがって x1 = 2 5 5 6 x=1のとき,①から 64 y₁= ゆえに 25 y=±- 8-5 x₁= 2 のとき,①から 96 y₁= 25 よって = ゆえに、②から求める接線の方程式は 5 6 5 注意 直線 3x±4y=10 は共通内接線(上の図のA, B), 直線x±2√6y=10は共 接線 (上の図のCD) である。 別解] 共通接線の方程式をy=mx+n とすると,これが円 C, C2に接する条 11/8/2/22=4, 1/242/8y=4 すなわち 3x±4y=10,x±2√6y=1 4√6 5x1 0-8-S In それぞれ 15m+nl =2, したがって √m²+(-1)² =1 √m²+(-1)² ||=2ym²+1, 15m+nl=√m²+1 ー中心と直線の距離 よって ||=2|5m+n| ゆえに n=-10m 1 3n=-10 このようにして,一方の文字を消去し, 連立方程式を解く。 た asks [練習 円 Ci:x2+y2=9とC2:x2+(y-2)=4の共通接線の方程式を求めよ。 ③ 108

未解決 回答数: 1
数学 高校生

(3)(ii)で、黄色マーカーのところで、 ・3s^2-2s-3はどこからきたのか ・9s^2+14s+1で割るとわかるのはなぜか がわかりません。教えてください。

【5】 a b を実数とする。xについての関数f(x)。g(x)を次のように定める. f(x)=xx-x+α.g(x)=-x+bx+4 x=f(x)は極小値を, g(x)は極大値をもち,これらの値は一致する. 次の問いに 答えよ. (1) tの値を求めよ. (2) a. bの値を求めよ. (3) 関数h(x) を次のように定める。 「f(x) (x<t のとき) h(x)= g(x)(xtのとき) (i) h(x) の最大値を求めよ. () 曲線y=h(x) をCとし, Cと異なる2点で接する直線を1とする.Cと1の2 である. (3)i) (1)のf(x)の増減表より, h(x)はxで増加し、 x < 1 で減 少する. また, 曲線y=g(x)は軸が直線x=1で上に凸の放物線であるか ら.h(x)はx≧1で減少する. よって、 (x)の増減は下表のようになる. ... 1 h(x) 15 増減表よりh(x)はx=132 のとき最大値 つの接点のx座標を求めよ. (40点) 考え方 (1) f'(x) を計算し、f(x)の増減を調べましょう. (2)(1)をもとに,f(x)の極小値を求めましょう。また,g(x)は2次関数ですから,平方完成をしてg(x)の極大値を 求めましょう。g(x) の極大値は微分法を用いて求めることもできます. (3)i) (1) (2) をもとにh(x) の増減を調べましょう. (曲線y=f(x)(x<t) 上の点 (s, f(s)) における接線が曲線y=g(x) (x≧t)に接する条件を考えましょう。曲線 y=f(x) (x<t) 上の点 (s, f(s)) における接線が,y=g(x)(x≧t)上の点(u, g(u)) における接線と一致すること を利用する方法もあります。 解答】 f(x)=xx-x+α より f'(x) = 3x²-2x-1=(3x+1)(x-1) なるので, f(x) の増減は下表のようになる. 1 x .... .... 1 ... f'(x) + 0 0 + f(x) 7 って, f(x) はx=1で極小値をもつので る. t=1 より, f(x) の極小値は f(1)=1'-1'-1+a=a-1 3. また (x)=(x-2/28)2 +12+4 (答) (1/3)=(-1)-(1)-(3)-(-1)+6 -1-3+9+162-167 をとる. ( Cは下図のようになる。 y=f(x) (8, f(s)) y = g(x) u (uif(w) ...... (答) 三択問題 6.2のとき。 a-1と +4の値はともに5である. 4 xにつ +2 (x) N for = f(s)=35-28-1 この接線は(vif(a))も通る。 y=(3s2-2s-1)(x-s) + s-s-s+ 6 図より Cとはx=s, u(s<1<u) で接するとしてよい.s<1より, I の方程式は y=f(s)(x-s)+f(s) (8,ρ(よ))における接線の方程式 より(8,t(s)の傾き Cのx <1の部分はy=f(x) で 表されるので,y=f(x)のグラ フの接線を求めている すなわち y=(3s2-2s-1)x - 2s + s' + 6 である. よって, C と1がx=u (u> 1) で接する条件は,x>1のとき h(x)=g(x) であることに注意すると (3s2-2s-1)x-2s' + s' + 6 = x + 2x + 4 g(x) x2+ (3s2-2s-3)x - 2s' + s + 2 = 0 が重解をもつことである. このとき ← ・接線と(2)の接点は いてある。 ………….. ① g()と(352-25-32-4(-2s'+s°+2)=0←①の判別式をDとするとD-O「①が重解をもつ①の判 「別式が0である」ことと、 ① が 重解をもつとき、その解は 3s22s-3 u = - 2 すなわち 金額をもつときax+bx+c=0の2解をdBdXB (35-25-3) = b 2-1 x+B= a+d=- であることを用いた、 (x)はx= 11/10で極大値+4をもつよって 曲線y=g(x) は上に凸の放物線 であるから, g(x) は頂点におい 極大となる. すなわち 解説 1° (別解) =1 b2 +4=a-1 4 a=6,b=2 -②数 17- ......(答) 201= ②数 18-

未解決 回答数: 0
1/82