学年

教科

質問の種類

数学 高校生

上と下で問われていることがどう違うのですか?

407 00000 12個のさいころを同時に投げるとき, 少なくとも1個は6の目が出るという事象 | 重要 例 46 確率の基本計算と和事象の確率 000 集まった。 D(R)と 本 43 44 =P(0) を1列 順に受 を4, 出た目の和が偶数となるという事象をBとする。 (1) AまたはBが起こる確率を求めよ。 (2) A,Bのどちらか一方だけが起こる確率を求めよ。 指針 全事象をUとすると, Uは右の図のように、互いに 排反 な4つの事象 A∩B, ANB, ANB, ANB に分けら れる。 (1) P(AUB)=P(A)+P(B)-P(A∩B) を利用。 (2)A,Bのどちらか一方だけが起こるという事象は, AND または ANB (互いに排反)で表される。 基本 43 44 ・U A B A∩BA∩B AB 2 ANB 砕 C (1)Āは,2個とも6以外の目が出るという事象であるか少なくとも・・・ 52 11 には余事象が近道 解答 ら P(A)=1-P(A)=1- 62 36 並び 個とも奇数の場合で P(B)= また、目の和が偶数となるのは, 2個とも偶数または2 32+32 18 検討 指針の図を、次のように 表すこともある。 62 36 レゼン 更に,少なくとも1個は6の目が出て,かつ, 出た目の 和が偶数となる場合には, 二! 通り。 (2, 6), (4, 6), (6, 2), (6, 4), (6, 6) の5通りがあるから P(A∩B)= ント =り 1 30 よって、求める確率は ゼン の P(AUB)=P(A)+P(B)-P(A∩B) = 18 11 + 36 36 受け C2 共 (2) (2)Aだけが起こるという事象は A∩B, B だけが起こる という事象は AnB で表され,この2つの事象は互いに 排反である。 よって、求める確率は P(A∩B)+P(A∩B) ={P(A)-P(A∩B)}+{P(B)-P(A∩B)} AA ANB A∩B ANB 図から,次の等式が成り 立つ。 P(A∩B)=P(A)-P(A∩B), P(A∩B)=P(B)-P(A∩B) また,(2)次の等式を 利用してもよい。 P(A∩B)+P(A∩B) =P(AUB)-P(A∩B) 5 5 -B- B- ANB = 62 36 5 24 2 36 36 3 11 18 JE + -2° 36 36 5 19 36 36 (1)の結果を利用。 練習 ジョーカーを除く1組52枚のトランプから同時に2枚取り出すとき,少なくとも1 ③ 46 枚がハートであるという事象をA, 2枚のマーク (スペード, ハート, ダイヤ, クラ

解決済み 回答数: 1
数学 高校生

⑴と⑵の違いがいまいちわかんないです、、 図にすると同じとこさすと思っちゃうんですけど、、

A,Bとして B) トを持って集まった。 にする。 ある確率をP(k)と 基本43,44 して、最後にP(0) 用して求める。 個のプレゼントを1列 並べて, A から順に受 取ると考える。 P(A)=1-P(A)=1- 52 11 = 「解答 ら 62 36 また、目の和が偶数となるのは, 2個とも偶数または2 EA, 46 確率の基本計算と和事象の確率 00000 さいころを同時に投げるとき, 少なくとも1個は6の目が出るという事象 出た目の和が偶数となるという事象をBとする。 AまたはBが起こる確率を求めよ。 A Bのどちらか一方だけが起こる確率を求めよ。 全事象をひとすると, ひは右の図のように, 互いに 排反 な4つの事象 A∩B, ANB, ANB, ANB に分けら れる。 (1) P(AUB)=P(A)+P(B)-P(A∩B) を利用。 (2) A, B のどちらか一方だけが起こるという事象は, ANBまたはANB (互いに排反)で表される。 -U. 基本 43 44 B ANBA∩B AB (1)は、2個とも6以外の目が出るという事象であるか⑩ 少なくとも A∩B 407 2章 ? 確率の基本性質 には余事象が近道 検討 〇場合の数は, 並び 個とも奇数の場合で P(B)= 32+32 18 62 指針の図を次のように 表すこともある。 36 コロロの3つの口 B, C, D のプレゼン 並べる方法で3!通り。 更に、少なくとも1個は6の目が出て,かつ, 出た目の 和が偶数となる場合には, B A∩B A∩B (2, 6), (4, 6), (6, 2), (6, 4), (6, 6) の5通りがあるから P(A∩B)= 5 B A∩B A∩B 62 36 自分のプレゼント 取るなら, 残り1 ■ず自分のプレゼン け取る。 よって、求める確率は 1 11 36 プレゼントを受け 人の選び方は C2 きは, 4人の p.354) の数で 9通り 3 8 から1本を 確率を求め 2.410 EX 35 (2) Aだけが起こるという事象は ANB, Bだけが起こる という事象は ANB で表され、この2つの事象は互いに 排反である。 よって、求める確率は P(A∩B)+P(A∩B) ={P(A)-P(A∩B)}+{P(B)-P(A∩B)} 11 + 18 36 36 -2° 536 図から、次の等式が成り 立つ。 P(A∩B)=P(A)-P(A∩B), P(A∩B)=P(B)-P(A∩B) また, (2) では次の等式を 利用してもよい。 P(A∩B)+P(A∩B) =P(AUB)-P(A∩B) 19 (1)の結果を利用 36 5 練習 ジョーカーを除く1組52枚のトランプから同時に2枚取り出すとき, 少なくとも1 046 枚がハートであるという事象をA, 2枚のマーク(スペード, ハート, ダイヤ, クラ ブ)が異なるという事象をBとする。 このとき,次の確率を求めよ。 (1) AまたはBが起こる確率 (2) 4.Bのどちらか一方だけが起こる確率 P(AUB)=P(A)+P(B)-P(A∩B) 18 5 24 2 ++ 36 36 36 3

解決済み 回答数: 1
数学 高校生

(3)の溶解度を使って析出量を求める問題なのですが、比を使って解いたら答えと全く違う値が出てきてしまいました。なぜ比で解けなかったのでしょうか。それともこれは比を使って解くことが出来る問題なのでしょうか?

基本例題23 固体の溶解度と濃度 →問題50 水100gに対する硝酸カリウム KNO の溶解度は, 25℃で36,60℃で110である。 硝酸カ リウム水溶液について、次の各問いに答えよ。 (1) 25℃における硝酸カリウムの飽和水溶液の濃度は何%か。 (2)(1)の水溶液のモル濃度を求めよ。 ただし, 飽和水溶液の密度を1.15g/cmとする。 (3) 60℃の硝酸カリウム飽和水溶液100gを25℃に冷却すると,結晶が何g析出するか。 考え方 (1) 飽和溶液では、溶質が 溶解度まで溶けている 解答 (1) 25℃では, 水100g に 36g の KNO が溶けて飽和するので、 質量パーセント濃度は,次のようになる。 (2)次式から、質量と密度 を用いて体積を求めること ができる。 36 g ×100=26.4 26% 100g+36g 136 g 2 (1 水溶液の体積は =118.2cm²=118.2 1.15g/cm3 体積[cm]= 質量[g] [g/cm³] (3) 水100gを含む飽和水 溶液を冷却すれば, 溶解度 の差に相当する質量の結晶 が析出する。 ×10-3L, KNO3(=101g/mol) の物質量は36/101mol なので そのモル濃度は, 36/101 mol 118.2×10-L =3.01mol/L=3.0mol/L (3)水100gを含む60℃の飽和水溶液は100g+110g=210g なので、この水溶液を25℃に冷却すると, 溶解度の差に相当 する質量 110g-36g=74gの結晶が析出する。 したがって, 飽和水溶液100gでは, 74g×100/210=35gとなる。

解決済み 回答数: 1
1/8