学年

教科

質問の種類

数学 高校生

線を引いている①の式が分からないのと、右側にある丸の印を付けている30というのが分かりません、。なんでtan90度ではないんですか? 解説お願いします🙇‍♀️

226 基本 例 135 測量の問題 00000 | 目の高さが1.5mの人が,平地に立っている木の高さを知るために, 木の前方の |地点Aから測った木の頂点の仰角が30℃, A から木に向かって10m近づいた地 点Bから測った仰角が45°であった。 木の高さを求めよ。 指針 p.222 基本事項 2 基本 133 基本 ① 与えられた値を三角形の辺や角としてとらえて,まず図をかく。そして、 ② 求めるものを文字で表し, 方程式を作る。 特に、直角三角形では,三平方の定理や三角比の利用が有効。 ここでは,目の高さを除いた木の高さを求める方がらく。 基本 例題 1 右の図の△AF に垂線 ADI AD=DC, AI (1) 線分AD (2) sin 75°, fast 点Aから点Pを見るとき, AP と水平面とのなす角を, PがAを通る水平面より上にあるならば仰角といい 下にあるならば俯角という。 ぎょう A 仰角 俯角 三角比 特に, の比を (1)ㄥ 形 き CHART 30° 45° 60°の三角比 (2) -30° 三角定規を思い出す 2 45° √3 (1) △ 60 45% 解答 ZA △A 右の図のように, 木の頂点を D, 木の根元をCとし 解答 目の高さの直線上の点を A', B', C' とする。 h=(10+x)tan 30° このとき, BC=x (m), C'D=h(m) とすると ① h=xtan45 A' 30° B45° ②から 1.5ml x=h これを①に代入して A 10m B xm 10+h h= ゆえに √3 (√3-1)h=10 ①,②はそれぞれ 10 よって h=- √√3-1 10(√3+1) (√3-1) (√3+1) 10(√3+1) tan 45°= =5 (√3+1) 2 したがって、求める木の高さは、目の高さを加えて 5(√3+1)+1.5=5√3+6.5(m)(*) 注意 この例題のような, 測量の問題では, 「小数第2位 を四捨五入せよ」などの指示がある場合は近似値を求 め、指示がない場合は計算の結果を、 そのまま (つま 上の例題では根号がついたまま) 答えとする。 tan 30°= /30° 45% 60°の三角比の 値は覚えておくこと。 (*) 31.73から 5√3=8.65 よって、538.7 とすると 5√3+6.58.7+6.5 =15.2(m) √3 tan 30% h h から ここで x tan45°=1 10+x’ 練習 海面のある場所から崖の上に立つ高さ30mの灯台の先端の仰角がG 135 よ よく L. △ か <カ (2) 練習 ③ 136

回答募集中 回答数: 0
数学 高校生

(2)で「-1/√3<m<1/√3」からXの範囲を求めるとき、 解答のようにではなくて、三枚目のように考えてしまいました。 これでうまく求められないから、 解答のようにYの範囲を求めて図を描くことで、Xの範囲を求めよう! っていう思考回路ですか?

偶数の関係を使った ④よりm=1/2で⑤に代入しY=1/2x2-2x ③ ④ により,X < 0 または 8 < X 2 X,Yをx, y に書き換え, 求めるMの軌跡は よって, X=2m……… ④ であり,Mは①上にあるから,Y=mX-4m...⑤ X D=m²-4m>0 .. <0 または 4<m (3)P,Qの座標をα,βとし,M(X, Y) とおくと,x=α+B αβは②の2解であるから,解と係数の関係により,a+β=4m 2 ③ これから軌跡の限界が出てく P,Qの座標をm で表す必要 このようなときは具体 急がず、とりあえず文字でお ⑤ではなく. 34 y=14x²-2x Y= 16 y= x²-2x (x<08<x) であり,右図太線である (○を除く) 8 I 1-1/2 (+) (a+B)-2a8 8 =2m²-4m と ④ からYをXで表しても たことはないが(本間の場 ⑤ (直線上にあること)に着 るのがうまい。 補助に考える。 円が を通るときは別に調 く。 12 演習題 ( 解答は p.104) 円(x-2)2+y2=1と直線y=mzが異なる2点P, Qで交っているとき, (1)の値の範囲を求めよ. (2) 線分 PQ の中点Mが描く軌跡を求め, それを図示せよ (軌跡に端点がある場合は その座標を明示せよ). (群馬大理工,情/改題) Mが直線上にある をうまく使う、なお 形的に解くことも る.

回答募集中 回答数: 0
数学 高校生

sinだけ2個三角形を書くのとcos,tanは左に書いて残りの角度が答えになる理由を教えてください

三角 050≤180 (1) sino= CHART 解答 GUIDE たすを求めよ。 √3 2 (2) COS 0=- √2 11125 (3) tan 6-- /3 三角方程式 等式を表す図を、定義通りにかく 三角比の定義 sino=y 半径の半円をかく。 r cos 6= ② 半円周上に,次のような点Pをとる。 tang= (1) 7=2 (2) *=√2 (3) 7-2 (1) y 座標が√3 (2) 座標が-1(3) x座標が√3 ③ 線分 OP x軸の正の部分のなす角を求める。 半径2の半円上で,y座標が√3で ある点は,P(1,3)とQ(-1,√3) の2つある。 求めるは,図の∠AOP と ∠AOQ Q 2 2120° 三角定規の辺の比を利用し よう。 32 (1) Q And -2-10 /1 2x 60° 160° √3 22 6060° であるから,この大きさを求めて 0=60° 120° (2) 半径√2の半円上で, x座標が -1 101 である点は,P(-1, 1) である。 √2 y2 (2) P 求める0 は,図の ∠AOP であるから, この大きさを求めて 1 135° √2 1 A 三平方の 45 ・1 0 √2 x 45° 0=135° を三 (3) 座標が-3 y座標が1である (3) 200 点Pをとると, 求める 0 は,図の ∠AOP である。 -2. 2 2 150° この大きさを求めて 0810 A. 30 ° 0=150° √√30 2 % 0 Ania 30° x x=-√3. y=1 とする。 ご注意 (3) tan0=20180° では、常に y≧0 であるから, tan0=- 1 とし 3 Ans CV110の 100°と次の等式を満たすを求めよ。 ton A==√√3

回答募集中 回答数: 0
数学 高校生

数学I・三角比の問題です。 解答を読んでみましたが、 あまり理解ができませんでした。 どなたか問題の解説をしていただけませんか? よろしくお願いいたします。

三角比の等式を満たす (三角方程式) 基礎例題 119ATER 0°≦0180° TEPE CUSKAS 200 √√3 (1) sin0= - 三角 (2) cos0= 2 CHART & GUIDE 1 2② 次の等式を満たす0を求めよ。 三角方程式 等式を表す図を、 定義通りにかく y 三角比の定義 sin0=3 cos0== tan 0= 半径rの半円をかく。 (1)_r=2 (2) r= √2 (3) r=2 半円周上に,次のような点Pをとる。 ■解答■ (1) 半径2の半円上で,y座標が√3で ある点は,P(1,√3)とQ(-1,√3) の2つある。 SAS 求める0は、図の∠AOP と ∠AOQ であるから、この大きさを求めて 0=60°, 120° 注意 (3) tan0= (1) ③3 線分 OP とx軸の正の部分のなす角を求める。 (2) 半径√2 の半円上で, x座標が -1 である点は,P(−1, 1) である。 求める 0は、図の∠AOP であるから, この大きさを求めて 0=135° √3 (2) x座標が-1 (3) x 座標が-√3,y座標が1 (3) x座標が-√3,y座標が1である 点Pをとると, 求める 0は、図の ∠AOP である。 この大きさを求めて (3) tan0=- -√7/2 1/3 0=150° x=-√3, y=1 とする。 ■基礎例題 116補充例題 1250① DA -√2 -2-10 P 1 P -2. yA 2 √31 12, bend 60°60° 120° 2 45° Th -√3 0 30° 1 2 x y (2) √2 CHEP √2 135° 0 YA 200 150° :- A √2 x A 1² 2 x 三角定規の辺の比を利用し よう。 (1) √√3 (3) 1 1 60°60° 101 ユ 2 P y で,0°≧0≦180° では,常に y≧0であるから, tan0=- x √2 20 45° 2 30° √√3 P 081>0>0 √√3 O 1 -√3 600 toal として,

未解決 回答数: 1
数学 高校生

なぜ(√3-1)h=10になるんですか?? 何回考えても分からなくて泣

20 10 基本例題132 測量の問題 (1) 目の高さが1.5mの人が, 平地に立っている木の高さを知るために, 木の前方の 地点Aから測った木の頂点の仰角が30℃, A から木に向かって10m近づいた地 点Bから測った仰角が45° であった。 木の高さを求めよ。 p.206 基本事項 ② 基本 131 指針 ① ② 求めるものを文字で表し, 方程式を作る。 特に、直角三角形では, 三平方の定理や三角比の利用が有効。 ここでは,目の高さを除いた木の高さを求める方がらく。 ②から h= そして, 与えられた値を三角形の辺や角としてとらえて,まず図をかく。 注意点Aから点Pを見るとき, AP と水平面とのなす角を, PがAを通る水平面より上にあるならば仰角といい, 下にあるならば俯角という。 CHART 30°, 45°,60°の三角比 三角定規を思い出す 解答 右の図のように, 木の頂点を D, 木の根元をCとし 目の高さの直線上の点をA', B', C' とする。 このとき,BC=x(m), C'D = h (m) とすると h=(10+x)tan 30° (1) (2) これを①に代入して ゆえに (√3-1)h=10 h=xtan 45° x=h 10+h √√3 ...... Ora 10 10(√3+1) よって h= √3-1 (√3-1)(√3+1) したがって 求める木の高さは、目の高さを加えて 5(√3+1)+1.5=5√3+6.5(m) (*) DA+TA A-a -=5(√3+1) Cys=1A\=30 >=2 800円 DA 注意 この例題のような, 測量の問題では,「小数第2位を 四捨五入せよ」などの指示がある場合は近似値を求め, 指示がない場合は計算の結果を、そのまま(つまり,上の 例題では根号がついたまま) 答えとする。 2 1.5ml A A KONSOL 30° ay tal √3 10 60° 0 1 基本 167 A' 30° B'/45° 俯角 仰角 √√2 45° ①,②はそれぞれ tan30°= h 10+x' から。ここで tan 30° = 1 45° 1 10m B xm 1 ・P D tan 45°= P' hm koth h x tan45°=1 (S) /30°45° 60°の三角比の値は 覚えておくこと。 209 (*)/3≒1.73 から 5√3=8.65 よって, 53 8.7 とすると 5√3 +6.5≒8.7+6.5=15.2(m) 4章 5 三角比の基本 15

未解決 回答数: 1
1/6