学年

教科

質問の種類

数学 高校生

(2)を解くとき、何から始めれば良いか分からなくて解けません。どんな思考回路で解けば良いですか?

CER FACITY 134 漸化式の応用 平面上にn本の直線があって,どの2本も平行でなく,どの3 本も1点で変わらないとき、これらの直線によって平面がan個 の部分に分けられるとする. (1) α1, a2, as を求めよ. (2) n本の直線が引いてあり, あらたに (n+1) 本目の直線を引 いたとき、もとのn本の直線と何か所で交わるか. (3) (2)を利用して, an+1 を an で表せ (4) an を求めよ. 精講 まず設問の意味を正しくとらえないといけません. nが含まれて いるとわかりにくいので,nに具体的な数字を代入してイメージを つかむことが大切で,これが(1)です. (3)が最大のテーマです。 「an+をαで表せ」という要求のときに, 41, a2 α などから様子を探るのも1つの手ですが,それは137以降 (数学的帰納法)に まかせることにします。ここでは,一般に考えるときにはどのように考えるか を学習します。 nant の違いは直線の本数が1本増えることです. 線と サト 大点によって,(n+1)本目の直線は,2つ ある直 の半直線と (n-1) 個の線分に分割されている (下図).. ② ③ ① 1本目 (n+1) (n+1)本目の直線 A 2本目3本目 この(n+1) 個の半直線と線分の1つによって、いままで1つであ った平面が2つに分割される. よって, (n+1) 本目の直線によって, 平面の部分は (n+1) 個増える ことになる. 本目 (4)n≧2のとき, an+1=an+n+1 (n≧1) f(n)の形やで 階差数列 (123 n-1 an=a1+(k+1)=2+2+3+..+n) k=1 =(1+2+…+n)+1-1/2n(n+1)+1/12 (2) これは, n=1のときも含む. 吟味を忘れずに ポイント 直線の数が増えれば分割される平面が増えることは想像がつきますが,問題 はいくつ増えるかで,これを考えるために(2)があります. 漸化式を作るとき, n番目の状態を既知として, (n+1) 番目の状態を考え、その変化を追う 解答 (1) (a₁) (a2) (a3) 第7章 ② ④ 27 ⑤ ③ 演習問題 134 ④ 右図のように円 01,02, 直線 ・は互いに接し、かつ点Cで交わる半 に内接している。このとき、次の問いに答えよ. 12 図より, a1=2 図より, a2=4 図より α3=7 (2) すべての直線は,どの2本も平行でなく,どの3本も1点で交わら ないので, (n+1) 本目の直線は,それ以前に引いてあるn本の直線の すべてと1回ずつ交わっている。 よって、nが所で交わる (1)円の半径が5CA の長さが12で あるとき,円の半径 12 を求めよ. (2)番目の円の半径を1とすると (2) きっと+1の関係式を求めよ. 02 -11 A2 Al

回答募集中 回答数: 0
数学 高校生

線を引いたところはなぜ普通の分散の計算じゃないんですか?そもそもuがなんなのかがよくわかりません

5-4 データの 377 うえる。 かといって, お小遣い 出題度 平均年齢が30 になった。 次 分散が3で というのは 人数が多い 11 (1)は(和)=(平均値)×(すべての度数)で計算すればいいんですよ ねこ そうだね。 308 基本例 例題 186 仮平均の利用 次の変量xのデータについて, 以下の問いに答えよ。 726,814,798,750,742,766,734,702 0000 (1) y=x-750 とおくことにより, 変量xのデータの平均値x を求めよ。 x-750 (2) u= 8 とおくことにより,変量xのデータの分散を求めよ。 (1)のデータの平均値を とすると, y=x-750 すなわち x=y+750である よって まずyを求める。 (2)x, uのデータの分散をそれぞれ sx2, Su² とすると, sx = 8's² である。よって、 ず変量xの各値に対応する変量uの値を求め, su2 を計算する。 (1) yのデータの平均値をyとすると y= | | (- {(-24)+64+48+0+(-8)+16+(-16)+(-48)}=4 (1)x1(726+..+ x=1/08 (726 としても求められるが 考事項 偏差値 までに学んだ平均値, 標準偏差を用いて求められる健 で、もう一方 解答 ゆえに x=y+750=754 x-750 (2) u= 8 とおくと, u, u2 の値は次のようになる。 答の方が計算がらく x 726 814 798 750 742 766 734 702 計 y -24 64 48 0 -8 16 - 16 -48 32 U -3 8 6 0 -1 2 -2 -6 4 u² 9 64 36 0 1 4 4 36 154 よって, uのデータの分散は PS (uのデータの分散) = 8 154-(1)-76-19 (u2のデータの平均 = (uのデータの平均 ゆえに、xのデータの分散は 値の 82×19=1216 sx=8²² があげられる。 複数教科の試験を受けた場合,平均 が各教科の実力の差を見極めることは難しい。粘 義される。 各教科の実力の差を比較しやすい。 偏差値は、偏差 データの変量xに対し,xの平均値をx ×10 によって得られる y = 50+ x-x Sx 偏差値の平均値は 50,標準偏差は 10 である 入学共通テストや, その前身である大学入試 偏差も発表されている。 それらの値を利用 ] ある生徒の大学入試センター試験の国語 通りであった。 大学入試センター試験得点 国語 (200点) 数学ⅠA (100点) 英語 (200点) 15 8 3教科の偏差値を求めると 150-98.67 国語 50+ 26.83 85-62.08 数学 50+ 21.85 170-118. とも C 均という。 参考上の例題 (1) の 「750」 のように,平均値の計算を簡u=x-x -の x を仮 単にするためにとった値のことを仮平均という。仮平 均を自分で設定する場合, 計算がらくになるようなもの を選ぶ。 具体的には,各データとの差が小さくなる値 (平均値に近いと予想される値)をとるとよい。 英語 50+ 41.06 上の計算から, 得点率で比較す が、偏差値で比較すると, 国語 偏差値を用いることで自分の相対位 正規分布 (詳しくは数学Bで学習) 次の表のようになることが知られて 偏差値 75 70 65

回答募集中 回答数: 0
数学 高校生

高次方程式に関して、紫で囲ったところについての質問です。まず、各項とも3次以上であると書かれているのですが、項は一つしかないと思います。どれらの項のことを各項と言っているのですか?また2次以下の項の係数を比較してとあるのですが、三次以上の項を無視できるのは、②の式がt(x)... 続きを読む

116 第2章 高次方程式 Think 例題 54 剰余の定理(2) [考え方 解答 **** (1)nを3以上の自然数とする.x" -1 を (x-1)3で割ったときの余り を求めよ. (2)x2+x15 +1 を x+1で割ったときの余りを求めよ. (1)x1=(x-1) Q(x)+ax²+bx+c このままでは何もできないので,x-1 が式変形でき ないか考える(x-1) に着目して, x-1 =t とおく x1 =t とおくと, 二項定理が利用できる. (二項定理については, p.21参照) (2)x=iで x2+1=0 となる. 実数係数の多項式の割り算での余りは実数係数の多 式である。 (1)3次式(x-1)で割ったときの商をQ(x) とすると,余りは 2次以下の多項式であるから、余りはax+bx+c とおける よって、 (t+1)-1=fQ(t+1)+α(t+1)+6(t+1)+c ...... ② 3次式で割るの で、余りは2次 以下の多項 解 Comme 1の の解で つまり この とす x-1 =t とおくと, x=t+1 より ①は, x-1=(x-1)2Q(x)+ax²+bx+c ②の左辺に二項定理を利用すると, (左辺)=,Cat+mCt' "Cat+„Caf'+nCit+"Co-1 =,Cat*+,C, "'++,Cf+n(n-1)t 2+nt ③ 2 C22 C=n n(n-1) n Co=1 また、②の(右辺)=Q(++1)+of+ (2a+b)t+a+b+c 多項式・Q(t+1)は各項とも3次以上である. ③④の2次以下の項の係数を比較して, ④4) とな a n(n-1) a= 2a+b=n,a+b+c=0 2 これらから a=- _n(n-1) b=-(n-2n),c=- n2-3n 余りは2次以 なので2次以下 の項のみに着目 する。 れる d 2 2 練習 よって, 求める余りは, n(n-1)x-(n²-2n)x+ 2 n²-3n 2 (2)2次式x+1で割ったときの商をQ(x), 余りをax+bとおく . x2 + x15+1=(x2+1)Q(x)+ax + b(a,bは実数) が成り立つ. これは恒等式であるから,両辺に x=i を代入すると, 1+1+1=(i+1)Q(i) + ai + b ... ① i=-1,=(i) =1, i=(i).i=-i より ① は, 2-i=b+ai となる. a b は実数であるから, よって、求める余りは, 注)微分法(第6章) を学習すると *** (6) *****, 54 **** a=-1,b=2 x+2 余りは1次以下 の多項式 =√-1 複素数の相等よ り 辺を微分した式も恒等式であることから,a,b,cの値を容易に求められる. xの恒等式 x-1=(x-1)Q(x)+ax²+bx+cの両 (1)を2以上の自然数とする.x" を (x-2)2で割ったときの余りを求めよ。 (2)2x'+x+1 を (x+1)(x-1)で割ったときの余りを求めよ. を

回答募集中 回答数: 0
数学 高校生

やり方教えて欲しいです😭

学習した日 月日 ( 2次方程式 38 2次方程式の利用(1) 立宜野 項 18m, 横9mの長方形の花畑に 右の図のような同じ幅の道をつくり たい。 花畑の部分の面積を42m²に (目標 具体的な問題を2次方程式を利用して解くことができる。 9m- DOD DD> DDDD xm =0の解が3 -4)=0 ると、 2=0 5. a. D> するには,道の幅を何mにすればよ 8m いですか。 (1) 道の幅をxmとすると, 花畑の縦の 部分は (8-x) mと表すことができる。 横の長さを表す式を求めなさい。 xm 宜野湾市立嘉数中学校 基本事項 2次方程式を利用して問題を解 <手順 ①求めるものをェとおく。 ②数量間の関係をつかみ、2次 方程式を立てる。 ③ 2次方程式を解く。 ④求めた解が問題の答えに適し ているかどうかを確かめ, 答 えとする。 きは、そのわけも書く (2)面積が42m²ということから, xを求めるための方程式をつくりなさい。 問題に適していない解があると (3)(2)でつくった方程式を解いて道の幅を求めなさい。 道幅が8m以上になる ことはあり得ない。 練習② 縦が36m, 横が45mの長方形の土地に、 右の図のように、 縦, 横同じ幅の道路をつけて残りを畑にしたい, 畑の面積が 1540m²になるようにするには道路の幅を何mにすればよい ですか。 (1) 道の幅をxmとして縦と横の長さを表す式を作りなさい。 もうに 縦 m 横 (2)面積が1540m²ということから, 方程式を作りなさい。 36m xm -45m xm m 道路を確認 1 のように移動し ても畑の面積は変わらない。 (3)(2)の方程式を解き、 道路の幅を求めなさい。 もう! 練習3 1辺がxcmの正方形の縦の長さを4cm短くし, 横を2倍にすると, 面積が90cmになった。 もとの正方形の面積を求めなさい。 xcm xcm xcm 4cm 自己評価 (5) とても まあ, できた できた

回答募集中 回答数: 0
1/27