学年

教科

質問の種類

数学 高校生

これ方程式を解いた答えとグラフが方程式を満たすxの値ってどうして一致するんですか?

基本例 3 分数関数のグラフと直線の共有点,分数不等式 (1) 関数 y= 2 (2) 不等式 指針 (1) 解答 x+3 のグラフと直線y=x+4の共有点の座標を求めよ。 <x+4 を解け。 2 x+3 y= 共有点実数解 すなわち、分数関数の式と直線の式からyを消去した 2 x+3 方程式 (2) 不等式 f(x) <g(x) の解 ⇔y=f(x) のグラフがy=g(x)のグラフより下側にあ るようなxの値の範囲 2 x+3 (1) ①, ② から =x+4の実数解が共有点のx座標である。 ①, y=x+4 グラフを利用して解を求める。 なお,分数式を含む方程式・不等式を 分数方程式・分数不等式 という。分数方程式・ 分数不等式では,(分母)≠0) というかくれた条件にも注意が必要である。 CHART 分数不等式の解グラフの上下関係から判断 2 x+3 両辺に x+3を掛けて =x+4 2=(x+4)(x+3) 整理して x2+7x+10=0 ゆえに (x+2)(x+5)=0 よって ②から ② とする。 x=-2,-5 x=-2のときy=2, x=-5のときy=-1 したがって, 共有点の座標は (2) 関数 ① のグラフが直線 ② の 下側にあるようなxの値の範 囲は,右の図から -5<x<-3, -2<x 注意 グラフを利用しないで,代 数的に解くこともできる。この 方法は次ページで学習する。 -4 -5 1 YA -3 -20 4 2 基本 1 y=g(x) (-2,2), (-5, -1) (1) y X y=f(x) 5 <yを消去。 2次方程式に帰着される [ただし, (分母)≠0 す なわち x≠-3という条 件がかくれている]。 x=-2. -5は 2 x+3 分母を0としないから、 方程式 2 x+3 解である。 (1) のグラフを利用。 =x+4の の共有点の座標を求めよ。 1 章 ① 分数関数・無理関数 <xキー3に要注意! x=-3 は, 関数 ① の定 義域に含まれない (つま り, グラフが存在しない)。

回答募集中 回答数: 0
数学 高校生

この問題の解答の❗️においてnが5以上なのはf1(x)というのが定義されてないからですか? また、そういう時に勝手にf(x)=f1(x)とするみたいなのは書いてはいけないのでしょうか?

ついて整理 重要 例題100 分数関数をn回合成した関数 x=1,x=2のとき, 関数 f(x)= 2x-3 x-1 f(x)=f(f(x)), fa(x)=f(fz(x)), ....., このとき, fz(x), f(x) を計算し, fn(x) [n≧2] を求めよ。 解答 指針 fn(x) を求めるには, fz(x), f(x), この問題では, (fofr)(x)=x, つまり fari(x)=x [恒等関数] となるものが出てくるから、 と順に求めて、その規則性をつかむ。 fn(x)はx, f(x), fz(x), ......, fn(x) の繰り返しとなる。 なお, fz(x), f(x), と順に求めた結果, fn(x)の式が具体的に予想できる場合は, 予想したものを数学的帰納法 (数学B) で証明する。という方針で進めるとよい (→下 の練習 100)。 f(x)=f(f(x))=2f(x)-3 よって f(x)-1 _2(2x-3)-3(x-1) 2x-3-(x-1) fs(x)=f(fz(x))= 2・ x-3 x-2 x-3 x-2 2(x-3)-3(x-2) x-3-(x-2) = = -1 について, -3 2. =x n=3mのとき fn(x)=x; fn(x)=f(fn-1(x)) [n≧3] とする。 基本 98 2x-3 x-1 2x-3 x-1 x-3 x-2 程式 6 ◯方が多い。 いて, a.ko ることができ 値が⑤.⑥t 忘れずに観ゆえに,fn(x)=fn-3(x) [n≧5] が成り立つ。 すなわち, m を自然数とすると f(x)=f(f(x))=f(x), f(x)=f(f(x))=f(f(x))=fz(x), f(x)=f(fs(x))=f(fz(x))=f(x), --3 -1 n=3m+1のとき fn(x)=2x-3; x-1 n=2,3m+2のとき fn(x)=x-3 x-2 171 分母・分子にx-1 を掛け る。 分母・分子にx-2 を掛け る。 恒等関数。 f(x)=f(x), f(x)=fz(x), f(x)=f(x), 3章 3 逆関数と合成関数 の関数f(x)=ax+1 (0<a<1) に対し, f(x)=f(x), fz(x)=f(fi(x)), 13 f(f(x)) [n≧2] とするとき, fn(x) を求めよ

回答募集中 回答数: 0
数学 高校生

積分の体積の問題です 黄色マーカーで引いたところの解説をお願いします

基礎問 226 123 回転体でない体積(ⅡI) 2⑦ 次の問いに答えよ. 12 (1) 定積分 1fpdt を求めよ。 (2) 不等式 z'+y2+log (1+22) log2 ......(*) で表される立体Dにつ いて (ア) 立体Dを平面 z=tで切ることを考える. このとき, 断面が存在 するような実数十のとりうる値を求めよ. (イ)(ア)における断面積をS(t) とする. S(t) をtで表せ. 立体Dの体積Vを求めよ. (ウ) 第6章積分法 精講 (1) 分数関数の定積分は,次の手順で考えます。 ① 「分子の次数<分母の次数」 の形へ ② f(x) ③②の形でなければ、 分母の式を見て 因数分解できれば, 部分分数分解へ (89 因数分解できなければ, tan0の置換を考える (90) (2) 立体Dの形が全くわかりませんが, 122 によれば断面積を積分して求めら れます。 だから立体の形がわからなくても、断面積が求まれば体積は求めら れるのです.そのときの定積分の式を求める作業が(イ)で, 定積分の範囲を求 める作業が(ア)になっています。 1+t2 "'(x) 解 答 (1) Softpdt=f'(1-14ps) at=1-So1tradt 1+t2 ここで, Softpdt において,t=tan0 とおくと 90(1) = S₁³ do = 7 4 -dxの形を疑う (89) 1+t2 t0→1 dt TL 1 do 00-E docosey だから、∫otpad="1+lando cos2d よって,Strat=1- 1+t2 π (2) (ア) (*) z=t を代入して ²+y² ≤log2-log(1+t²) ......① この不等式をみたす実数工、リが存在するこ これが断面が存在す とから, るということ log2-log (1+t²) ≥0 2≥1+t² = 1²≤1 " -1≤t≤1 立体Dの平面 z=t (-1≦t≦1) による断面はxy平面上の不等 式①で表される図形で,これは (半径) が log2-10g(1+1)の円の (イ) 周および内部を表すので 22² +7² {/² S(t)=z{log2-log(1+t)} (→) V=r{log 2-log(1+t²)}dt =2zf"{log2-10g(1+t)}dt =2zlog2-2x(t)'log(1+t)dt =2xl0g2-2x|tlog(1+t)+ 25 24 psdt 21² =4nf1+₁ dt-4(1-4)=(1-x) 4π 1+t2 2 ポイント 演習問題 123 ◆これが z=tで切る ということ 227 <S(t) は偶関数 87 (1) 部分積分 2 注∫_{log2-log(1+t^2)}dt = f_log1fFdtと変形してしまうと 定積分は厳しくなります。 回転体でない体積の求め方は I. 基準軸をとって ⅡI. 基準軸に垂直な平面で切ってできる断面の面積 を求めて ⅢI.ⅡIの断面積を積分する y≧0≦z≦1で表され 4つの不等式x+y-z, る立体Dについて,次の問いに答えよ. (1) 立体Dの平面 z=t による断面の面積S(t) をtで表せ. (2) 立体Dの体積Vを求めよ. 79 第6章

回答募集中 回答数: 0
1/4