学年

教科

質問の種類

数学 高校生

⑵が意味わかんないです。

in (a+B), の値を求めよ、 p.241 =1 を利用して cos a cos B 角α. B 象限に注意。 sin² ar + costs sin²β+cosp= 12_16 13 65 1233 13 22 23 sin(a-8) を求め, sin(a-B) cos(a-B) 計算してもよい ing+coslo= n²+cos を求めよ 4 EX93(1 152 2直線のなす角 (1) 2直線3x-2y+2=0, 3√3x+y-1=0のなす鋭角を求めよ。 基本例 指針 ・例題 (2) 直線y=2x-1 と の角をなす直線の傾きを求めよ。 解答 2直線のなす角 まず, 各直線とx軸のなす角に注目 直線y=mx+nとx軸の正の向きとのなす角を0とすると m=tane (050<n, 077 ) π (1) 2直線の方程式を変形すると √3 y= 2x+1, y=-3√3x+1 図のように、 2直線とx軸の正 2 の向きとのなす角を,それぞれ α, β とすると, 求める鋭角は 0=β-a SIGN √3 2 (1) 2直線とx軸の正の向きとのなす角をα,βとすると, 2直線のなす鋭角は,α<βならβ-α または π-β-α) で表される。 ←図から判断。 この問題では, tane, tan β の値から具体的な角が得られないので, tan ( β-α) の計 算に加法定理を利用する。 an 6 tanc= tan 0=tan(8-a)= tan(a+4)= 0<0</ であるから 0= (2) 直線y=2x-1とx軸の正の向 きとのなす角をαとすると tanq=2 tan ±tan π y=-3√3x+1 -3√3で tan β-tana 1+tan βtana =(-3/3)={(1+(3/3)・丹 π 1 tan a tan- Sa √√3 y=- 1 0 O y=2x 2±1 (複号同順) 1+2・1 であるから 求める直線の傾きは -3, 3 B x /y=2x-1 m X p.241 基本事項 2 ys n to 0 y=mx+n | 単に2直線のなす角を求め るだけであれば, p.241 基 本事項 2 の公式利用が早 い。 1+ 傾きが mi, m2 の2直線 のなす鋭角を0とすると tan 0= x 2 別解 | 2直線は垂直でないから tan 8 m-m2 1+m1m2 √3-(-3√3) 2 -7/3+1/3-√3 ÷ 2 <<から 245 2直線のなす角は,それ ぞれと平行で原点を通る 2直線のなす角に等しい。 そこで、 直線y=2x1 を平行移動した直線 y=2x をもとにした図を かくと, 見通しがよくな る。 練習 (1) 2直線x+3y-6=0, x-2y+2=0 のなす鋭角を求めよ。 2 152 (2)直線y=-x+1との角をなし, 点 (1,√3) を通る直線の方程式を求めよ。 4 章 24 加法定理

回答募集中 回答数: 0
数学 高校生

⑵がいみわかんないです。なんでπ/4がここに入るんですか。また±になってる理由がわかりません。

sin(Q+B), B) の値を求めよ。 cos0=1 を利用して るが、COS acos Bと 36 角α B 象限に注意。 Asina+cos Asin²B+cos 31216 5 13 65 412 5 13 . 11 2013/18 ◄sin(a-8 を求め, sin(a- cos(a- 計算してもお "sin'a+adin sin³8+cos n(er-8), 基本例題 152 2直線のなす角 (1) 2直線√3x-2y+2=0,3√3x+y-1=0のなす鋭角0を求めよ。 4 | (2) 直線y=2x-1 と の角をなす直線の傾きを求めよ。 の値を求め 指針 IB 解答 2直線のなす角 まず、各直線とx軸のなす角に注目 直線y=mx+nとx軸の正の向きとのなす角を0とすると m=tane (0≤0<n, 0= 7 ) (1) 2直線とx軸の正の向きとのなす角をα, β とすると, 2直線のなす鋭角0は,α <βなら β-α または π- (B-α) で表される。 ←図から判断。 (1) 2直線の方程式を変形すると √√3 -x+1, y=-3√3x+1 2 図のように, 2直線とx軸の正 の向きとのなす角を,それぞれ α, β とすると, 求める鋭角は 0=β-α y= √3 2 tan0=tan(β-α)=- tan a=- 9 tanβ=3√3で tan(a+4)= この問題では, tan α, tan βの値から具体的な角が得られないので, tan ( β-α) の計 算に加法定理を利用する。 y=-3√3x+1 tan β-tana 1+tan 3 tan a tan a tan √3 y=- 1Ftan a tan- 4 (複号同順) π 0<0</ であるから 0= 75 3 (2) 直線y=2x-1とx軸の正の向 YA きとのなす角をα とすると tang=2 2001 = Ka I TEIS 4 = −(−3√3-√3)={1+(-3√3). √3)=√3 /3 2 2 340J 2004 S 0 0 16-2 y=2x 0 2±1 1+2.1 であるから 求める直線の傾きは -3, 1 3 =(0) TIA B x SELO _n m x /p.241 基本事項 2 YA n O 0 (S) Ly=mx+n -0 単に2直線のなす角を求め るだけであれば, p.241 基 本事項 2 の公式利用が早 い。 傾きが m1,m2の2直線 のなす鋭角を0とすると tan 0= m-m2 1+m1m2 x -7√3+1/3-√3 2 2 y=2x-10<<から6=7 GURA 10 2直線は垂直でないから tan 0 √3-(-3√3) 1+√3+(-3√3) 2 = 2直線のなす角は, それ ぞれと平行で原点を通る 2直線のなす角に等しい。 そこで,直線y=2x-1 を平行移動した直線 y=2x をもとにした図を かくと, 見通しがよくな る。 練習 (1) 2直線x+3y-6=0, x-2y+2=0 のなす鋭角 0 を求めよ。 ② 152 (2) 直線y=-x+1と4の角をなし,点(1,3)を通る直線の方程式を求めよ。 245 4 章 24 加法定理

回答募集中 回答数: 0
数学 高校生

1番です。解説は[1]などの記述に数行使っているため 最後に3つまとめて答えを示していますが、 私の記述の場合、同じことを2回書いてるような記述になっています。この記述でも問題ないですか?

重要 例題110/2次不等式の解法 (4) 次の不等式を解け。 ただし, aは定数とする。 (1) x2+(2-a)x−2a≦0 (2) ax² ≤axise 基本106) 指針 文字係数になっても, 2次不等式の解法の要領は同じ。 まず, 左辺=0 の2次方程式を解く。 それには の2通りあるが,ここで ① 因数分解の利用 [2] 解の公式利用 は左辺を因数分解してみるとうまくいく。 α<βのとき (x-a)(x-β)>0x<a, B<x (x-a)(x-B) <0⇒a<x<B α, βがαの式になるときは,αとβの大小関係で場合分けをして上の公式を使う。 (2) x²の係数に注意が必要。 > 0, a = 0, a < 0 で場合分け。 CHART (x-a)(x-B) ≧0の解α, βの大小関係に注意 解答 (1) x²+(2-a)x-2a≦0から (x+2)(x-a) ≤0 [1] a<-2のとき, ① の解は [2] α=-2のとき, ①は (x+2)² ≤0 よって, 解は x=-2 [3] -2 <a のとき, ① の解は-2≦x≦a 以上から a<-2のとき a≦x≦-2 a=-2のとき x=-2 -2 <αのとき -2≦x≦a ax(x-1) ≤0 (2) ax² ≦ax から [1] a>0のとき, ① から よって, 解は 0≤x≤1 [2] α=0のとき, ① は これはxがどんな値でも成り立つ。 よって、 解は すべての実数 [3] a<0 のとき, ① から x(x-1) 20 よって, 解は x≦0, 1≦x 以上から x(x-1) ≤0 0.x(x-1)≦0 a>0のとき 0≦x≦1; a=0のとき すべての実数; a<0のときx≦0, 1≦x ① 00000 [1] teli [2] [3] Vital -2 ① の両辺を正の数α で割る。 0≦0 となる。 は 「<または=」 の意味なので、 <と = のどちらか 一方が成り立てば正しい。 < ① の両辺を負の数αで割る。 負の数で割るから, 不等号の向き が変わる。 注意 (2) について,ax Sax の両辺を ax で割って, x≦1としたら誤り。なぜなら, ax=0のと きは両辺を割ることができないし, ax<0のときは不等号の向きが変わるからである。 177 3章 13 2次不等式

回答募集中 回答数: 0
数学 高校生

赤線で囲った部分、x軸に垂直じゃ無い確認ってどうやってやるんですか?

158 解答 00000 基本例題100 円周上の点における接線 p.153, p.154 基本事項 円(x-1)'+(y-2)=25上の点P(4,6) における接線の方程式を求めよ。 指針 接線の方程式を求める方法として、以下の4通りの方法がある。 1の解法が最も簡潔 であるが, いろいろな解法を身につけておこう。 ① 公式利用 点Pは円周上の点であるから,接線の公式を用いて直ちに求められる。 円(x-a)^2+(y-b)^=r² 上の点 (x1,y) における接線の方程式は (x₁-a)(x-a)+(y₁−b)(y-b)=r² ② 接線半径 円の中心をCとすると,点Pにおける接線は半径 CP に垂直である。 したがって,点Pを通り, 直線CP に垂直な直線を求めればよい。 ③ 中心と接線の距離=半径 点Pを通る直線の方程式を作り、これと円の中心Cの距離が半径に等しければ接線 になる。点と直線の距離の公式を用いて, 直線の方程式を決定すればよい。 4 接点 重解 点Pを通る直線の方程式を作り,円の方程式と連立させて得られる2次方程式が重 解をもつとき、 接線になる。 その際, 重解⇔ 判別式D=0を用いる。 ① (4-1)(x-1)+(6−2)(y-2)=25 よって 3x+4y=36 ② 円の中心を C (1, 2) とする。 求める接線は,点Pを通り, 半径 CP に垂直な直線である。 直線CP の傾きは であるか ら求める接線の方程式は y-6=(x-4) ゆえに 両辺を2乗して |m・1-2-4m+6] _P (4,6) 5 C(1,2) すなわち mx-y-4m+6=0 とされる。 円の中心 (1, 2) 直線 ① の距離が円の半径5に等しい から √√m² + (−1)² =5 x すなわち3x+4y=36 ③点Pにおける接線はx軸に垂直でないから、傾きを ③ 中心と接線の距離=半径 m とすると,接線の方程式は y-6=m(x-4) |-3m+4|=5√m²+1 (-3m+4)²=25(m²+1) 1 公式利用 ② 接線 半径 この解法は,円の接線の 公式を導くときに利用さ れるものである(p.154 解説参照)。 垂直傾きの積が-1 x軸に垂直な直線は y=mx+n の形で表せ ないから, の確認を している。 点(x,y)と直線 ax+by+c=0 の距離は lax+by+cl √a²+b² 検討 よ 12 ② 100

回答募集中 回答数: 0
数学 高校生

線で引いたところ途中式お願いしたいです。 自分そこまで字があまりうまくありませんが、書いたので途中式教えてください!

110 2次不等式の解法 (4) 次の不等式を解け。ただし、qは定数とする。 x²+(2-a)x-2a≤0 例題 (2) ax Sax 文字係数になっても、 2次不等式の解法の要領は同じ。 まず、左辺=0の2次方程式を解く。 それには ①1 因数分解の利用 ②2 解の公式利用 の2通りあるが, ここで は左辺を因数分解してみるとうまくいく。 x²+(2-a)x=2a≤05 (x+2)(x−a) ≤0 [1] a<-2のとき, ① の解は a≦x≦-2 2]=-2のとき, ① は (x+2)² ≤0 よって、 解は x=-2 3] -2 <a のとき, ①の解は -2≦x≦a 以上から a<-2のとき a≦x≦-2 a=-2のとき x=-2 ー2<αのとき -2≦x≦a ax Sax から ax(x-1) ≤0... α<βのとき (x-a)(x-β)>0x<α,B<x (x-α)(x−ß)<0⇒a<x<ß α,βがα の式になるときは,αとβの大小関係で場合分けをして上の公式を使う。 (2)x²の係数に注意が必要。 a>0,a=0, a < 0 で場合分け。 CHART (x-α)(x-B) 0の解αβの大小関係に注意 ...... x(x-1) ≤0 ■] a>0 のとき, ① から よって、 解は 0≤x≤1 e] α=0 のとき, ① は これはxがどんな値でも成り立つ。 よって、 解は すべての実数 ] a<0のとき, ① から よって解は x≦0, 1≦x 上から 0.x(x-1)≦0 x(x-1)≥0 a>0のとき 0≦x≦1; α=0のとき すべての実数; a<0のとき x≦0, 1≦x 0000 [1] 基本106 [2] [3] to ① の両辺を正の数αで割る。 0≦0 となる。 は 「くまたい の意味なので、くと = のどち 一方が成り立てば正しい。 ① の両辺を負の数 α で割る 負の数で割るから,不等号 が変わる。 (2) について, ax² Sax の両辺をax で割って, x≦1としたら誤り。なぜなら, ax きは両辺を割ることができないし, ax<0のときは不等号の向きが変わるからであ

回答募集中 回答数: 0
数学 高校生

1枚目の(2)は3パターンで場合分け2枚目の(2)は2パターンで場合分け このような場合分けの違いはどこから分かるのですか?

E 重要 例題110 2次不等式の解法 (4) 次の不等式を解け。 ただし, α は定数とする。 x²+(2-a)x−2a≤0 計 文字係数になっても, 2次不等式の解法の要領は同じ。 まず, 左辺=0の2次方程 ① 因数分解の利用 それには の2通りあるが、 ② 解の公式利用 は左辺を因数分解してみるとうまくいく。 a<βのとき β<x (x-a)(x-B)>0<x<α, (x-α)(x-B)<0⇒a<x<B βがαの式になるときは,α と B の大小関係で場合分けをして上の公式を α, (2)の係数に注意が必要。 a>0,a=0, a<Qで場合分け。」 (2ax² sax CHART (x-α)(x-B) ≧0の解α, β の大小関係に注意このように分けると 113 金の向きかかわる。 530 解答 (1)x+(2-a)x-2a≦0から [1] a<-2のとき, ① の解はa≦x≦-2 [2] α=-2のとき, ① は (x+2)² ≤0 は x=-2 7:00~でするのは2次方程式 [3] -2 <a のとき, ① の解は -2≦x≦a 以上から a<-2のとき a≦x≦2 元=2のとき x=-2 2<αのとき -2≦x≦a (x+2)(x-a) ≤0 ...... 11 [1] (2) ax≦ax から ax(x-1)≦0 [1] a>0 のとき, ① から よっては 0≦x≦1 [2] α=0のとき, ① は これはxがどんな値でも成り立つ。 よっては すべての実数 [3] a<0のとき, ① から x(x-1)≧0 ① x(x-1)≦0 よって解は x≤0, 1≤x 以上から 練習次の不等式を解け 0.x(x-1)≦0 a>0のとき 0≦x≦1; a=0のときすべての実数; a<0のとき x≦0, 1≦x to til 11 a 0 する x -2 基 [2] V x [3] tel -2 $3@1> [1] ① の両辺を正の数αで割る。 注意 (2) について, ax≦ax の両辺をaxで割って, x≦1としたら誤り。 なぜなら, ax=0のと きは両辺を割ることができないし, ax<0のときは不等号の向きが変わるからである。 (3) 26 Ist 0≦0 となる。 は 「くまたは=」 の意味なので、くと= のどちらか 一方が成り立てば正しい。 ① の両辺を負の数 α で割る。 負の数で割るから、不等号の向き が変わる。 3 2次不等式 13

回答募集中 回答数: 0
数学 高校生

例題103の⑵の問題で一般項が2のK乗−1になる理由がわからないので教えて下さい

25540 基本例題 103 一般項を求めて和の公式利用 次の数列の初項から第n項までの和を求めよ。 (1) 12,3252, 指針 次の手順で求める。 ① まず,一般項を求める→第k項をnの式で表す。 k=1 を利用。 解答 与えられた数列の第k項をak とし 求める和をSとする。 (1) a=(2k-1)² よって 練習 100 ②2 (第k項)を計算。 Σk, k, k3 の公式や、場合によっては等比数列の和の 注意 1 で,一般項を第n項としないで第k項としたのは,文字nが項数を表してい からである。 (2) ak=1+2+2+ ...... +2-1 一等比数列の和 等比数列の和の公式を利用して ak を ん で表す。 CHART Σの計算 まず一般項 (第k項) をんの式で表す よって Sn = ak= (2k-1)² = Ž (4k²—4k+1) k=1 k=1 72 n =4Σk²-4Σk+≥1 k=1 k=1 k=1 (2) 1, 1+2, 1+2+2², = 72 (2) a=1+2+2²+......+2k-1-1. (2² − 1) 2-1 k=1 - = 4• n(n+1)(2n+1) — 4• ½ n(n+1)+n =1/13n{2(n+1)(2n+1)-6(n+1)+3} = n(4n²-1) = n(2n+1)(2n−1) 3 k=1 00000 -=2¹²-1 基本102 重要 114 次の数列の初項から第n項までの和を求め上 Sn=as2 (2'-1)=22-21 k=1 2(2-1) n=2"+1-n-2 2-1 注意 和が求められたら, n=1,23として検算するように心掛けるとよい。 <第k項で一般項を考える 11/12でくくり 分数が出てこないように する。 ak は初項1,公比2, の等比数列の和。 S.=2(22-12 すこともできる。 【基: 次 指針 - し

回答募集中 回答数: 0
1/3