学年

教科

質問の種類

数学 高校生

解答が正解しているか見てほしいです。間違っていたら正しい解き方と答えを教えてほしいです。

1.2 けたの6の倍数がある。 十の位の数は一の位の数よりも4大きい。 この2けた の数はいくつか。 2けたの数のうち、十の位が一の位の数よりも4大きい数は、40.51.62,73,84 95である。このうち、6の倍数は84。 84. # 2.3で割り切れる2けたの数がある。 一の位の数は十の位の数よりも6大きい。 十の位の数と一の位の数をかけ合わせるといつくになるか。 つけたの数のうち、一の位は十の位の数より6大きい数は、60,7 このうち3であり切れるのは、93 71,82930 十の位と一の位の数をかけ合わせると、9×3=27で 27。 27, 3.2けたの偶数がある。 十の位の数と一の位の数の和は13, 差は1である。この 偶数はいくつか。 つけたの数のうち、十の位と一の位の数の和が13なものは、495867,76 85.94半の位と一の位の数の差がしなものは、67,760 このうち偶数は76 76. 12 4. 十の位の数と一の位の数の和が11である2けたの数がある。 十の位の数と一の 位の数を入れかえた数と、もとの数との差は63である。 十の位の数と一の位の数を かけ合わせるといくつになるか。 2けた。数のうち、それぞれの位の和が1のものは29.38、47,56,65,74,83 92。 それぞれの位の数を入れかえた数ともとの数との差は63。これにあて はまるのが29,920 それぞれの位をかけ合わせると、2×9=1で180 18 + 5. 十の位の数と一の位の数の差が5になる2けたの数がある。 一の位の数は十の位 の数の約数である。 この2けたの数はいくつか。 つけたの数のうち、十の位と一の位の数の差が5になるのは。 50,61,7283 94.49.38.27.16。このうち、一の位の数が十の位の数の約数である数 はか。 61.

未解決 回答数: 1
数学 高校生

場合の数の質問です 赤線で引いた所が分かりません どうして×3なんですか

346 基本 (全体) (・・・でない)の考えの利用 00000 大 中 小3個のさいころを投げるとき, 目の積が4の倍数になる場合は何通り あるか。 [東京女子大] 目の積が4の倍数」を考える正攻法でいくと, 意外と面倒。そこで, として考えると早い。ここで、目の積が4の倍数にならないのは、次の場合である。 目の積が4の倍数)=(全体)-(目の積が4の倍数でない) [1] 目の積が奇数 3つの目がすべて奇数 2つは奇数 [2] 目の積が偶数で 4の倍数でない→偶数の目は2または1つだけで、他の CHART 場合の数 目の出る場合の数の総数は 早道も考える (Aである) = (全体) (Aでない)の活用 6×6×6=216 (通り) 解答 目の積が4の倍数にならない場合には,次の場合がある。 [1] 目の積が奇数の場合 3つの目がすべて奇数のときで 3×3×3=27 (通り) [2] 目の積が偶数で, 4の倍数でない場合 積の法則 (6" と書いてい よい。) 数どうしの種は 1つでも偶数があれば 積は偶数になる。 3つのうち、2つの目が奇数で、残りの1つは2または64が入るとダメ。 の目であるから (32×2)×3=54 (通り) [1] [2] から 目の積が4の倍数にならない場合の数は 27+54=81 (通り) よって、目の積が4の倍数になる場合の数は 216-81=135 (通り) 目の積が偶数で4の倍数でない場合の考え方 和の法則 (全体)・・・でない) 基本 500円 で、 いも 指針 解答 上の解答の [2] は,次のようにして考えている。 検討 大中小のさいころの出た目を (大,中,小) と表すと, 3つの目の積が偶数で、4の倍数 にならない目の出方は,以下のような場合である。 (大,中,小) = (奇数, 奇数, 2 または 6 ) 3×3×2 通り よって =(奇数 2 または 6 奇数) 3×2×3 通り =(2または6, 奇数,奇数) 2×3×3 通り (32×2)×3通り 参考目の積が4の倍数になる場合の数を直接求めると,次のようになる。 (i) 3つの目がすべて偶数 33通り 2つの目が偶数で, 残り1つの目が奇数 (32×3)×3通り 合わせて 27+81 +27 (1つの目が4で、 残り2つの目が奇数 → → (1×32) ×3通り」 =135(通り) 練習 大,中,小3個のさいころを投げるとき,次の場合は何通りあるか。 ③9 (1) 目の積が3の倍数になる場合 (2)目の積が6の倍数になる場合 p.357 EX81 検

未解決 回答数: 1
1/383