学年

教科

質問の種類

数学 高校生

画像の問題でなぜa=0の場合も考えなければならないのですか。 また下の問題ではa=0の場合を考えずに解いていたのですが何の違いですか。

重要 例題 56 1次関数の決定 (2) 101 ののののの 関数y=ax-a+3 (0≦x≦2) の値域が 1≦ysb であるとき、定数a,bの 値を求めよ。 基本 49 CHART & THINKING グラフ利用 端点に注目 1次関数とは書かれていない。 また, 1次の係数の符号がわからないから, グラフが右上 がりか、右下がりかもわからない。 このようなときは,αが正, 0, 負の場合に分けて考えて みよう。 →a>0 のときグラフは右上がり, a<0 のときグラフは右下がり。 a>0, a=0, a<0 の各場合において値域を求め、 それが 1sysb と一致する条件から a. bの連立方程式を作り、 解く。 このとき,得られたαの値が場合分けの条件を満たしているかどうか確認することを忘れ ずに。 解答 x=0 のとき y=-a+3, x=2のとき y=a+3 [1] α>0 のとき [1]y この関数はの値が増加するとyの値も増加するから x=2で最大 b, x=0で最小値1をとる。 3 7 関数とグラフ よって これを解いて +3=b, -α+3=1M a=2, b=5 んで これは α>0を満たす。 wwwwwwww [2] α=0 のとき -a+3 70 よん?! この関数は α=0 の場合を忘れない y=3 ように。 このとき, 値域は y=3 であり, 1≦ybに適さない。 定数関数 [3] α <0 のとき [3].y この関数はxの値が増加するとyの値は減少するから, x=0で最大値 b, x=2で最小値1をとる。 ba+3 よって -a+3=b, a+3=1 これを解いて α=-2,6=5 これは α<0 を満たす。 [1]~[3] から (a, b)=(2, 5), (-2, 5) PRACTICE 56 定義域が −2≦x≦2, 値域が −2≦y≦4 である1次関数を求めよ。 (2) 関数y=ax+b b≦x≦b+1) の値域が-3≦y≦5であるとき、定数a, b の 値を求めよ。 が正って なんでわかるのか

未解決 回答数: 1
数学 高校生

数Ⅰデータの分析の質問です。 1枚目の表(ⅰ)、表(ⅱ)にある数学、国語のテスト結果の度数、相対度数から2枚目の表(ⅲ)、表(ⅳ)にある結果はどのように導けるか教えてください🙇🏻‍♂️ 数学が80点以上かつ国語が80点以上がなぜ48人であり9.6%となるのか分かりません よ... 続きを読む

◆データの分析の補足◆ 2 元表を利用しよう! ある高校で,500人の生徒にある数学と国語 (現代文) のテストを行った。 このテストについて, 表 (i) 数学のテスト結果 A:80点以上, A:80点未満 数学 A ((i) 数学で, 80点以上の生徒達をA, 80点未満の生徒達をĀとおき,また, (i) 国語で, 80点以上の生徒達をB, 80点未満の生徒達をBとおいて, それぞれの人数を調べて集計すると,次のような表 (i) (ii) の結果が得られた。 ここで,AAを,それぞれ数学が 得意な人達と不得意な人達とし, B とBもそれぞれ国語が得意な人達 と不得意な人達と分類することにす ると,表(i) から, 数学が得意な度数 人は全体の20%で, 不得意な人は 80%であることが分かる。 同様に 表 (ii) から, 国語が得意な人は全体 の40%で,不得意な人は60%であ ることが分かるんだね。 100 400 相対度数 20% 80% 表 (ii) 国語 (現代文)のテスト結果 B:80点以上, B:80点未満 国語 B B でも,このように数学と国語のデ ータを個別に見ている限り, これだ けで終わってしまうんだけれど,学 校側には,各生徒の数学と国語のデ 度数 200 300 相対度数 40% 60% ータは共にそろっているので、この2つのデータを併せて,集合論で学んだ n(A∩B), n(A∩B), n (A∩B), n (A∩B) を,次の表 (ii) や (iv) のような形 数学と国語 数学が得意で 数学が不得意 数学と国語が が共に得意 国語が不得意で国語が得意 共に不得意な な人の人数な人の人数 人の人数 で表すことができるんだね。 250 人の人数

解決済み 回答数: 1
数学 高校生

(3)の問題で、なぜ217冊以上になるのかが分かりません 教えてください

問題1 翔子さんの学校では, 卒業の記念に文集を作成することにした。 A社とB社の文集作成にかかる代金を 調べ、下の表にまとめた。 代金は基本料金と製本料金と印刷料金の合計金額とする。 例えば, 60冊注文し た場合, A社では5000 + 50×60 +30×60=9800であるため、 代金は9800円となり, B社では10000 + 50×60 +30×50=14500であるため、 代金は14500円となる。このとき, 次の各問いに答えなさい。 ただし、消費 税は考えないものとする。 (24年度 【5】) 基本料金 A社 5000円 B社 10000円 製本料金 印刷料金 1冊50円 1冊30円 1冊30円 1冊50円 ただし, 51冊以上注文すると50冊を超えた冊数分の印刷料金は無料 (1) B社に100冊注文するときの代金を求めなさい。 (2) A社にx冊注文するときの代金を円とするとき,yをxの式で表しなさい。 (3) 翔子さんはA社とB社の文集作成にかかる代金を比較するため, 卒業文集をx冊注文するときの代金 (円)y をy円としてxとyの関係を右の図のようにグラフで表した。このグ ラフから, 150冊注文したときは, A社の方が安いが, 250冊注文した ときは、B社の方が安くなることが分かった。 何冊以上の卒業文集を 注文した場合にB社の方が安くなるか, 最も小さな整数で答えなさい。 問題の答え (1)16500円 (2)y=80x+5000 + (3) 217冊以上 B社 [A社] 10000円 5000 0 50 150 250x (車)

解決済み 回答数: 1
1/53