学年

教科

質問の種類

数学 高校生

なぜπ/6が√3/3になるのかが分かりません 赤で囲った部分のことです

D M ★★☆☆ 例題 153 2直線のなす角 2直線 3xy0 ... ① 2x+y-4=0 ② について (1) 2直線のなす角0 (0≧≦o)を求めよ。 (2) 直線 ①との角をなし、原点を通る直線の方程式を求めよ。 ReAction 2直線のなす角は, tan0 = (傾き) を利用せよ IA 例題132 思考プロセス (1) 直線 ①とx軸の正の向きのなす角を 0, 直線②とx軸の正の向きのなす角を02 001, 02 の関係は 0 tand, tan02 (2) 図をかく 条件 を満たす直線は, 右の図のように2本ある。 Action» 2直線のなす角0は, tan の加法定理を利用せよ 解 (1) ① ② がx軸の正の向きとなす角をそれぞれ 01, 02 と tanQ=3, tand2=2 すると 002-01 であるから tane = tan(02-01) tang – tan. 1+tan O2tan01 -2-3 = 1 1+(-2)・3 直線 y=mx+kがx軸 の正の向きとなす角を 0(0≦0π)とすると m=tan0 y=mx+k 2 yea 4001200 102 01 ( 01 _02 交点を通るx軸に平行な 直線を引き, 同位角を考 0 2x える。 30 π より 0 = π 4 (2) 求める直線がx軸の正の向きと y π なす角は 01 土 である。 6 6+5√3 tan (+) 3 tan (6-6)=-6+5√3 3 よって、 求める直線は,原点を通るから tan(+)- 3- tan(0,-)- 6+5√3 y = -6+5√3 3+ 3 = 1-3. www/www/www/w 3 √3 3 3 1+3・ 3 3 -x, y= X 3 原点を通るから、切片 は0である。 123 (1) 練習 1532 直線 x-2y=0 ... ①, x+3y-6=0 ② について ... (1) 2直線のなす角00≧6 0≧≦1) を求めよ。と π 2 (2)直線 ①との角をなし,原点を通る直線の方程式を求めよ。 p.310 問題

解決済み 回答数: 1
数学 高校生

アとウの問題の最後って逆の確認はしなくていいんですか?

8 恒等式 - (ア) 恒等式 4+7x3-32-23-14 =a+bx+cx(x-1)+dx(x-1)(x-2)+ex(x-1)(x-2)(x-3) が成り立つとき, 定数ae の値を求めよ. (九州産大・情報科学, 工) (イ) 次の式がxについての恒等式になるように,定数a, b, c の値を定めなさい。 x3+2x2+1=(x-1)+α(x-1)2+6(x-1)+c ( 流通科学大) (ウ) x+y=1を満たすx, yについて,ax2+bxy+cy2=1が常に成り立つように a, b, c を定めよ. (龍谷大・理工(推薦)) 係数比較法と数値代入法 多項式f(x) g(x)について, f (x)=g(x) が恒等式になる条件を とらえる主な方法は,次の①と②の2つである. 1 f(x)とg(x)の同じ次数の項の係数がすべて等しい. ② f(x), g(x) の (見かけの) 次数の高い方をn次式とするとき, 異なる n+1個の値に対して,f(x)=g() が成り立つ. x-pで展開 (イ)の右辺を 「x-1について展開した式」 というが, どんな多項式も につい て展開した式として表すことができる. この形にすれば (x-p)2で割った余りなどがすぐに分かる. (イ)を右辺の形にするには, 左辺の各項を,r={(x-1) +1}などとして展開すればよい. 等式の条件 1文字を消去するのが原則である(本シリーズ 「数Ⅰ」 p.16). 解答豐 (ア) 与式の両辺にx=0を代入して,a=-14. αを移項し両辺をxで割って, x3+7x2-3x-23 =b+c(x-1)+d(x-1)(x-2)+e(x-1)(x-2)(x-3) 両辺に x=1,2,3,0を代入して, -18=6,7=b+c,58= 6+2c+2d, -23=b-c+2d-6e b=-18,c=25, d=13, e=1 (イ)x+2x2+1={(x-1)+1}3+2{(x-1)+1}2+1 ={(x-1)+3(x-1)2+3(x-1)+1}+2{(x-1)2+2(x-1)+1}+1 =(x-1)+5(x-1)2+7 (x-1)+4 (α=5,b=7,c=4) (ウ) y=1-xであるから, ax2+bx (1-x)+c(1-x)2=1 これがェによらず成り立つから,r= 0, 1, -1 を代入して, c=1, a=1, a-26+4c=1 .. a=1,c=1,6=2 注 (ア) ①x=1を代入して♭を求め, bを左辺に移項し両辺をx-1 で割る'代入'と '割り算’を繰り返して求めることもできる. (イ)与式にx=1を代入し,c=4. 両辺をxで微分して, 3x2+4x=3(x-1)2+2a(x-1)+b.x=1を代入し, 6=7. (以下略) ・① 多項式の恒等式が両辺ともにェ を因数に持てば, 両辺をェで割っ た式も恒等式. e=1であることは、 元の式の両 辺のの係数を比べることでも 分かる.このような考察をして ミスを防ごう. ← (x+y)²=1となる. 次にx=2を代入してcを求め,c を移項して2で割る. ←代入と微分"を繰り返して 求めることもできる. 波調

回答募集中 回答数: 0
1/180