学年

教科

質問の種類

数学 高校生

この問題なんですが、2枚目の動画授業と似ている問題だったので参考に解いていたのですが、一枚目だと2log2anをbnとおいている辺りから進めません!2枚目のやり方の方が自分にはあっているなと感じたのでそっちのやり方で進めたいのですが、一枚目の問題になるとできなくなってしまい... 続きを読む

3 漸化式と数学的帰納法 (77) B1 題 B1.35 漸化式 antipan" たぶん次数相型 a=2, +1=4am で定義される数列{an} の一般項 am を求めよ. **** え方 漸化式がα+1 や ami などの累乗の場合や, に √ がついている場合, 10月のよう な積の場合は,両辺の対数をとるとうまくいくことが多い。 ここでは,a の係数4(=22) に着目して, 底が2である対数を両辺にとると, log2an+1=log2(4a)=log24+logza3 より 210g2a+1=2+310gzan ここで, log2am=b" とおくと, 26+1=36+2となり、例題 B1.32 の形の漸化式となる. a=2>0, an+1=4amより, すべての自然数nに対して an>0 an+12=4am について 底2で両辺の対数をとると, logzan+1=10g24a73 m 210gz4+1=log24+310gzan より oga=b とおくと, 210gza+1=310gza,+2 26+1=36+2 したがって,bn+1= 本来マイナス 3 20m+1 より、これを変形すると 3 に ここで, b1+2=10gza1+2=10g22+2=3 下の注〉 参照 漸化式の形と初値 すべての自然につい amであると分か bn+1+2=2(b+2) ……① 3 ①とb+2=3 より, 数列{b,+2} は,初項 3.公比の 特性方程式 3 α=24+1を解くと α-2 21egant 3/ 等比数列だから,一般項は, bn+2=3 3 3" すなわち, bn b-3-2-3-20 2= -x-2 よっち bn=10gzan=- 3"-2" 2n-1 3"-2" X=-2 より an-2 2-1 Ocus 漸化式 an+1=pan" は両辺の対数をとる -注> 「α」=2, am+12=4a73 のとき, すべての自然数について am>0」について a2=4a=4.23 仮に a2= -4 bu= 3" 244-2 よって, 20 3" 2 2.244 2 34-2" 21 (1) 34-2-244 21-7 える (

解決済み 回答数: 1
数学 高校生

21の意味がわからないので最大値と最小値の説明をして欲しいです。それと解き方もお願いします。

学A -U- A 21 生徒60人の集合をUとし,数学に合格した生 B AnB AnBANB 全体の集合を A, 英語に合格した生徒全体の 集合をBとすると n(U)=60,n(A)=50,n(B)=55 (1) 少なくとも一方に合格した生徒全体の集合は AUBである。 n (AUB) が最大となるのは AUB=Uのときである。 n(AUB)=n(U) 23 15 n(A)= An B, 5の倍数 ると また, れぞれ150以下 倍数 60の倍 n(A∩B)=1 n(AnBnC 求めるのはn( n(AUBU =n(A)+n B) このとき06-08- U)-n(AUB) Po=60 n (AUB) が最小となるのは ACB のときである。 CUAUB=U ·U· -1005-008 このとき,AUB=Bであり n(AUB)=n(B) 90 (個) =55 ACB したがって,最も多くて 60人 最も少なくて55人 24(1)n(Cu あるから -n(An. +n(An =50+37 + (2) 両方とも合格した生徒全体の集合は A∩Bで よって ACB ある。 0 ar したがって, ar-08= また,n (AUB)=n(A)+n(B) -n (A∩B) から 81 B)から (2) 求めるの n(BUC)= (AUB) ■のは, (4) (A∩B)=n(A) +n(B)-n (AUB) =105-n(AUB) J-N=A よって, n (A∩B) が最大値をとるのは、 n (AUB) が最小となるときである。Alw (1) より, n (AUB) の最小値は55であるから, このとき n(A∩B)=105-55=50 n (A∩B) が最小値をとるのは, n (AUB) が最大 となるときである。 SUA BUA (1)より, n (AUB) の最大値は60であるから, AUB=U このときn(A∩B)=105-60=45 したがって,最も多くて50人、合 最も少なくて45人 -U- 22 n (A)+n(B)+n(C) よって n(AUBU であるから 96=50- よって したがって たことの

未解決 回答数: 0
1/7