学年

教科

質問の種類

数学 高校生

21の意味がわからないので最大値と最小値の説明をして欲しいです。それと解き方もお願いします。

学A -U- A 21 生徒60人の集合をUとし,数学に合格した生 B AnB AnBANB 全体の集合を A, 英語に合格した生徒全体の 集合をBとすると n(U)=60,n(A)=50,n(B)=55 (1) 少なくとも一方に合格した生徒全体の集合は AUBである。 n (AUB) が最大となるのは AUB=Uのときである。 n(AUB)=n(U) 23 15 n(A)= An B, 5の倍数 ると また, れぞれ150以下 倍数 60の倍 n(A∩B)=1 n(AnBnC 求めるのはn( n(AUBU =n(A)+n B) このとき06-08- U)-n(AUB) Po=60 n (AUB) が最小となるのは ACB のときである。 CUAUB=U ·U· -1005-008 このとき,AUB=Bであり n(AUB)=n(B) 90 (個) =55 ACB したがって,最も多くて 60人 最も少なくて55人 24(1)n(Cu あるから -n(An. +n(An =50+37 + (2) 両方とも合格した生徒全体の集合は A∩Bで よって ACB ある。 0 ar したがって, ar-08= また,n (AUB)=n(A)+n(B) -n (A∩B) から 81 B)から (2) 求めるの n(BUC)= (AUB) ■のは, (4) (A∩B)=n(A) +n(B)-n (AUB) =105-n(AUB) J-N=A よって, n (A∩B) が最大値をとるのは、 n (AUB) が最小となるときである。Alw (1) より, n (AUB) の最小値は55であるから, このとき n(A∩B)=105-55=50 n (A∩B) が最小値をとるのは, n (AUB) が最大 となるときである。 SUA BUA (1)より, n (AUB) の最大値は60であるから, AUB=U このときn(A∩B)=105-60=45 したがって,最も多くて50人、合 最も少なくて45人 -U- 22 n (A)+n(B)+n(C) よって n(AUBU であるから 96=50- よって したがって たことの

未解決 回答数: 0
数学 高校生

この問題をlogを使わずに解くことはできませんか? もしできるなら、その手順を教えてください

470 重要 例題 38 am = pa型の漸化式 a=1, an+1=2√an で定められる数列{an}の一般項を求めよ。 指針 に がついている形, a㎡²2 や an+] など 累乗の形を含む漸化式 解法の手順は ①1 漸化式の両辺の対数をとる。 am の係数りに注目して、底がりの対数を考える。 -log.MV=log..M+log.N logpasti = logsp+logpan" ←log A=klog.M すなわち logpan+1=1+qlogpan [2] logpam=ba とおくと 0m+1=1+gbm but=b.+▲ の形の漸化式 (p.464 基本例題 34のタイプ)に帰着。 対数をとるときは, (真数) > 0 すなわち a>0であることを必ず確認しておく。 CHART 漸化式 α+1 = pa" 両辺の対数をと よって, an+1=2√an の両辺の2を底とする対数をとると log2an+1=loga 2√an log2an+1=1+ ゆえに α=1>0で, an+1=2√an(>0) であるから, すべての自に注意 解答然数nに対して an>0である。 -log₂ an 2 bat1-1+1/230円 bn+1-2=1/12 (6-2) 10gzam=bm とおくと 00000 これを変形して ここで bı-2=10g21-2=-2 よって,数列{bm-2} は初項-2,公比 の等比数列で An-1 bn-2=-2 =-2(12) すなわち bm=2-23- したがって, log2an =2-22 から an=22-2 antipa 厳密には、数学的 で証明できる。 ◄loga(2-a) 練習 α1=1, an+1=20m² で定められる数列{an}の一般項を求めよ。 ③ 38 = log22+=logia, ◆特性方程式 a = 1+120 を解くと α=2 =2¹-" logaan=pand" anan+1 を含む漸化式の解法 検討 anan+1のような積の形で表された漸化式にも両辺の対数をとる が有効である。 例えば, logcanan+1=10gcan+logcan+1となり, logcan と 10gean+1の関係式を導くことが できる。 [類 慶応大] p.496 EX21 a

回答募集中 回答数: 0
数学 高校生

なんで青線の①の式から辺BCが2:3に内分すると分かったのか謎だし、線分ADを5:6に内分すると言うのもどう考えたら出るのか全くわからないので手がつきません😭😭😭😭🙇‍♀️🙇‍♀️🙇‍♀️🙇‍♀️🙇‍♀️🙇‍♀️教えてください🙏

基本例題 22 分点に関するベクトルの等式と三角形の面積比 ①①①①① △ABCの内部に点Pがあり, 6PÂ +3P+2PC = 0 を満たしている。 (1) 点Pはどのような位置にあるか。 (2) APAB, APBC, APCA の面積の比を求めよ。 解答 (1) 等式を変形すると 指針▷ (1) αPA+6PB+cPC = の問題点Aに関する位置ベクトルAP, AB, AC の式に 直し、AP=k nAB+mAC m+n の形を導く。 A (2) 三角形の面積比 等高な底辺の比②2 等底なら高さの比を利用して,各 三角形と△ABCとの面積比を求める。その際, (1) の結果も利用。 よって -6AP+3(AB-AP) +2(AC-AP)=0 11AP=3AB+2AC ① ゆえに ゆえに AP= 5,3AB+2AC 5 辺BCを2:3に内分する点をDと すると AP-AD したがって, 辺BCを2:3に内分 する点をDとすると, 点Pは線分 AD を 56 に内分する位 置にある。 (2) △ABCの面積をSとすると △PAB= 51.4 △ABD= 6 △PBC= …AABC= 11 APCA-A -.AACD= B 6 53 11 5 D n △ABC=11S •AABC=ns APAB: APBC: APCA = S: S: S p.413 基本事項 [②2] [類 名古屋市大] 基本58 C =2:6:3 差の形に分割。 AB, AC の数に注目す ると,線分 BC の内分点の 3AB+2AC 2+3 位置ベクトル の形に変形することを思い つく。 【等高S,S, S,S,- [参考] 一般に, △ABCと点Pに対し, IPA+mPB+nPC=0 を満たす正の数m,nが存在す るとき,次のことが成り立つ。 (1) 点Pは△ABCの内部にある。 (2) APBC: APCA: APAB=1:m:n

回答募集中 回答数: 0
1/4