学年

教科

質問の種類

数学 高校生

ここの単元がほんとに苦手で、赤ペンで解説を写しましたがよくわかりません。 214も215も半径を1としているのに、上の例では半径が2になるのはなぜでしょう。 また、点Pの座標ってどうやって出しているのでしょうか。根本的にわかっていませんがどうか教えてください🙏

PO ① 57 の三角比の定義 右の図において,∠AOP = 0 のとき sin = cos =* r tan 0=y x (ただし, tan 90° は定義されない) ② 180°-0の三角比(0°0≦180°) sin (180°-0)=sin 0 cos(180°-0)=-cos tan (180°-8)=-tan0 例68鈍角の三角比 150°の正弦, 余弦, 正接の値を求めよ。 ya P(x, y) A -T 0 ▼0°<< 90° のとき, POINT57で定義された三角 比は, p.92 POINT53で定 義した三角比と同じになる。 P(x,y) y 0 8 x y A T x BIS 解答 右の図で,∠AOP=150°とする。 OTI nie () 半円の半径を = 2 にとると, 点Pの座標は(√31) そこでx=-√3, y=1 として おいて P 1 150° sin 150°= = 1 r 2' cos 150°=- =√3 √√3 801 200 -3 O A r 2 2 ESI 200 (S) tan 150°= 1 x √3 √3 は60 2 1 30° √3 基本 第4章 214 180°の正弦,余弦,正接の値を求め よ! 満たすりを 180°のど。 1800 半円の半径をしにとると、 点の皆様は(-10)口 sin 180°= そこでた小4=0として COS(80° Gin: = = 0 r Tan (80 = 1. 2 for 0 0 TG) (S) □215 90°の正弦、 余弦の値を求めよ。 満たすのを求め 400 sin(180-90)=sin90° 109 (180-90%) 上の図でLA0P=90°とする 半円の半径を1にとると 点の座標は(0.1) そこで大20.9=1として、 sin90% 4=1=1 cos 90° = 14: 9:0 COS90% ORI ee 209

解決済み 回答数: 1
数学 高校生

写真が横向きですみません。 黄色でマークしたところがわかりません。 なぜ3や5が出てくるのかが解説を見てもピンとこず,出てくる理由が知りたいです。あとなぜ3や5なのかもできれば教えていただきたいです。

正の約数の個数が28個である最小の正の整数を求めよ. (早稲田大) へ、 解答 28=2×2×7 であるから, 正の約数の個数が28個である整数 N を素因数分解すると、 (ア) N = d (1) N=ab () N=a'b'c' (ただし,p, g, rは自然数である.また, a, b, c は相異なる素数である) のいずれかの形で表される. (ア) N=d” のとき,約数の個数は+1であるから,p+1=28より,p=27である. このとき最小のNはa=2とした 227 である. (イ)N= dba (p≦q) のとき, 約数の個数は, (n+1) (g+1) であり、 (n+1)(g+1)=28 これより, 2≦p+1≦g+1に注意すると, (p, q)=(1, 13), (3, 6) abをできるだけ小さくするためには, a≧b とすべきであり, a,bは相異なる 素数なので、 α=3, b=2としたものが 最小である ・(p,g)=(1,13) のとき, 最小のNは,N=31.213 である. 2 ・(p,g)=(36)のとき,最小のNは, N=33.2°(=1728) である. (ウ) N=abic (p≦a≦r) のとき,約数の個数は(n+1) (g+1)(+1) であり, (n+1)(g+1)(r+1)=28 .. (p, q, r)=(1, 1, 6) このとき,最小のNは,N=5'31.2=(960) である. (ア)(イ),(ウ)より、約数の個数が28個である最小の正の整数は,960

解決済み 回答数: 1
1/208