学年

教科

質問の種類

数学 高校生

アとウの問題の最後って逆の確認はしなくていいんですか?

8 恒等式 - (ア) 恒等式 4+7x3-32-23-14 =a+bx+cx(x-1)+dx(x-1)(x-2)+ex(x-1)(x-2)(x-3) が成り立つとき, 定数ae の値を求めよ. (九州産大・情報科学, 工) (イ) 次の式がxについての恒等式になるように,定数a, b, c の値を定めなさい。 x3+2x2+1=(x-1)+α(x-1)2+6(x-1)+c ( 流通科学大) (ウ) x+y=1を満たすx, yについて,ax2+bxy+cy2=1が常に成り立つように a, b, c を定めよ. (龍谷大・理工(推薦)) 係数比較法と数値代入法 多項式f(x) g(x)について, f (x)=g(x) が恒等式になる条件を とらえる主な方法は,次の①と②の2つである. 1 f(x)とg(x)の同じ次数の項の係数がすべて等しい. ② f(x), g(x) の (見かけの) 次数の高い方をn次式とするとき, 異なる n+1個の値に対して,f(x)=g() が成り立つ. x-pで展開 (イ)の右辺を 「x-1について展開した式」 というが, どんな多項式も につい て展開した式として表すことができる. この形にすれば (x-p)2で割った余りなどがすぐに分かる. (イ)を右辺の形にするには, 左辺の各項を,r={(x-1) +1}などとして展開すればよい. 等式の条件 1文字を消去するのが原則である(本シリーズ 「数Ⅰ」 p.16). 解答豐 (ア) 与式の両辺にx=0を代入して,a=-14. αを移項し両辺をxで割って, x3+7x2-3x-23 =b+c(x-1)+d(x-1)(x-2)+e(x-1)(x-2)(x-3) 両辺に x=1,2,3,0を代入して, -18=6,7=b+c,58= 6+2c+2d, -23=b-c+2d-6e b=-18,c=25, d=13, e=1 (イ)x+2x2+1={(x-1)+1}3+2{(x-1)+1}2+1 ={(x-1)+3(x-1)2+3(x-1)+1}+2{(x-1)2+2(x-1)+1}+1 =(x-1)+5(x-1)2+7 (x-1)+4 (α=5,b=7,c=4) (ウ) y=1-xであるから, ax2+bx (1-x)+c(1-x)2=1 これがェによらず成り立つから,r= 0, 1, -1 を代入して, c=1, a=1, a-26+4c=1 .. a=1,c=1,6=2 注 (ア) ①x=1を代入して♭を求め, bを左辺に移項し両辺をx-1 で割る'代入'と '割り算’を繰り返して求めることもできる. (イ)与式にx=1を代入し,c=4. 両辺をxで微分して, 3x2+4x=3(x-1)2+2a(x-1)+b.x=1を代入し, 6=7. (以下略) ・① 多項式の恒等式が両辺ともにェ を因数に持てば, 両辺をェで割っ た式も恒等式. e=1であることは、 元の式の両 辺のの係数を比べることでも 分かる.このような考察をして ミスを防ごう. ← (x+y)²=1となる. 次にx=2を代入してcを求め,c を移項して2で割る. ←代入と微分"を繰り返して 求めることもできる. 波調

回答募集中 回答数: 0
数学 高校生

波線ところから分からないので教えて欲しいです🙇‍♀️

領域問題② ② [2016 名城大] xy 平面上に、2本の半直線l: y=x(x2), my=-x (x≦0) がある。 l上を点P (+1, t+1) (t-1) が動き, m上を点Q (t-1, -1+1) (t≦1) が動く。 (1)直線 PQ の方程式をを用いて表せ。 1 -x2+1に接することを示せ。 (2) PQ はもの値によらず、常に放物線y=1/2x2 (3)tの値が1st1の範囲で変化するとき、 線分 PQ が動いてできる領域を求め, 図示せよ。 解説 asyson+1 [1] [2] から, a を xにおき換えて、線分 PQ いてできる領域を表す不等式は −2≦x<0 のとき -*Sys+1 0≦x≦2 のとき xsys +1 が動 これを図示すると、 右の図の斜線部分である。 ただし、境界線を含む。 (1) 直線 PQ の方程式は -t+1-(t+1) y-(t+1)= -{x-(t+1)} t-1-(t+1) ゆえに y=t{x-(t+1)}+t+1 よって y=tx-f2+1 (2) y=ax2+1とy=1/2x2+1を連立させて x²+1=tx-t²+1 ゆえに x2-4tx+4t2=0 よって (x-2)²=0 この方程式はtの値によらず、常にx=2tを重解にもつ。 1 したがって, 直線 PQはtの値によらず, 常に放物線y=-x'+1に接する。 4 (3) 線分 PQ の方程式は、 (1) から y=tx-t2+1 t-1≦x+1) ここでαを定数とし、直線x=αと線分 PQ の交点の座標をtの関数と考え、こ れをf(t) とすると f(t)=ta-t+1=-f+at+1=(t-1)+10 -3 a² +1 x=α と固定するときのの条件は 11... P かつ t-1≦a≦t+1 すなわち a-1≦tsa+1 ② ①,② から、点(a,t)の存在範囲は、 右の図の網の 部分のようになる。 ただし、境界線を含む。) t=a+1 したがって、 ①と②の共通範囲は -2 [1] −2≦a<0 のとき -1≤t≤a+1 ....... ③ O 2 a [2]02 のとき a-1≤t≤1 ・・・・・・・ ④ t= ここで,y=f(t) のグラフの軸は直線t=2 である 2 が、これは区間 ③区間 ④のそれぞれの中央の値 に一致する。 yのとりうる値の範囲を調べると [1] −2≦a<0 のとき 人 t=a-1 a yはt=-1, a+1で最小: 1=1/27 で最大となる。 f(-1)=f(a+1)=-a, a² -a≤y≤+1 [2] 0≦a≦2 のとき (1)=9 2 100 a² +1であるから,yのとりうる値の範囲は yはt=1, a-1で最小;t=1/2で最大となる。 f(1)=f(a-1)=α であるから, yのとりうる値の範囲は

回答募集中 回答数: 0
数学 高校生

例題75.2 私が書いた波線部は、y以外は◯回微分を( ◯ )というふうに書かないからd/dxのk乗というふうに書いているのですか??

2 基本 例題 75 第n 次導関数を求める (1) nπ (1) y=sin2x のとき,y)=2"sin(2x+ 2 nを自然数とする。 00000 sin(x+ であることを証明せよ。 /p.129 基本事項 重要 76, p.135 参考事項 (2) y=x”の第n 次導関数を求めよ。 指針 yan) は,yの第n次導関数のことである。そして,自然数nについての問題である から, 自然数nの問題 数学的帰納法で証明の方針で進める。 (2)では, n=1,2,3の場合を調べてy() を推測し,数学的帰納法で証明する。 注意 数学的帰納法による証明の要領 (数学B) [1] n=1のとき成り立つことを示す。 n=k+1のときも成り立つことを示す。 =kのとき成り立つと仮定し, [2] nπ (1)y(n)=2"sin2x+ 2 ① とする。 解答 [1] n=1のとき y'=2cos2x=2sin2x+ トル)であるから,①は成り立つ。 kл [2]n=k のとき,①が成り立つと仮定すると y = 2* sin(2x+ n=k+1のときを考えると,②の両辺をxで微分して d 2 kл _y(k)=2k+1cos2x+ ( D dx 2 ゆえに yk2'''sin(2x++1)=2*+sin{2x+(k+1)x} よって;n=k+1のときも ① は成り立つ。 [1], [2] から, すべての自然数nについて ① は成り立つ。 (2) n=1,2,3のとき,順に _y'=x'=1,y"=(x2)"=(2x)'=2・1,y" = (x3)"=3(x2)"=3・2・1 したがって,y(n)=n! ...... ① と推測できる。 [1] n=1のとき y=1! であるから, ① は成り立つ。 [2] n=kのとき, ①が成り立つと仮定すると y(k)=k! すなわち dk dxkx*=k! →(ス n=k+1のときを考えると, y=xk+1 で, (x+1)'=(k+1)xであるから dk k+ dk (d²xx*+1) = d² * ((k+1)x^} dockdx y (k+1)=- =(k+1)- dk dxk /dxkx=(k+1)k!=(k+1)! よって, n=k+1のときも ① は成り立つ。 [1], [2] から, すべての自然数nについて①は成り立ち 次の関数の第n次導関数を求めよ (2) y=^ y(n)=n!

回答募集中 回答数: 0
1/60