学年

教科

質問の種類

数学 高校生

階級値を用いて求めた平均値ってなんですか?

11 次のヒストグラムは,昭和60年と平成30年における出産時の母の年齢別に,出 生数をまとめたものである。 ただし,ヒストグラムの階級はそれぞれ, 10歳以上15 歳未満,15歳以上20歳未満, 50歳以上55歳未満のように区切られている。 昭和60年(1985年) 平成30年(2018年) 800,000 700,000 600,000 500,000 400,000 300,000 200,000 100,000 0 (人) 10 23 17,854 15 247,341 20 682,885 25 381,466 4) ⑤ 30 93,501 35 ① 2 (ア) ○ 40 8,224 45 (ア): X (7): X (ア): X 244 50 1 55歳) (ア) ○ (1): 0 (1): X (1): 0 (1): X (1): X 400,000 350,000 300,000 250,000 200,000 150,000 100,000 50,000 0 (人) 10 37 15 8,741 7): X (ウ): ○ (ウ): ○ (ウ): ○ (ウ): X 77,023 20 334,906 233,754 25 30 211,021 35 51,258 資料:厚生労働省「平成30年 (2018) 人口動態統計」 [1] 上のヒストグラムから読み取れることとして,次の (ア), (イ), (ウ)の意見 があった。 出産時の母の年齢について,ヒストグラムから読み取れる意見には○ を,ヒストグラムから読み取れない意見には×をつけるとき, その組合せとして, 下の①~⑤のうちから最も適切なものを一つ選べ。 22 40 (ア) 中央値は, 昭和60年,平成30年ともに 「30歳以上35歳未満」の階 級に含まれている。 1,591 68 (イ) 度数の最も大きい階級の階級値は,昭和60年よりも平成30年の方が 10歳高い。 45 (ウ) 階級値を用いて求めた平均値は, 昭和60年よりも平成30年の方が 高い。 50 55歳)

回答募集中 回答数: 0
数学 高校生

数学の位置ベクトルで写真の赤線のsと(1-s)が何処のことを言ってるのかわからないので教えて下さい

2②2 2直線の交点の位置ベクトル, 線型独立 解答の手がかり AC が線型独立な AB と AD の線型結合で表されているので, AP. AQ, AR を AB と ADを用いて 表す てAB とADで2通りに表して係数比較することを考える。 AR が AB と AD の線型結合で表せれば, AR は AC と AD の線型結合で表せて, CR RD を求めることができるのである。 <解答> 点Pは辺ABを21に内分するから. de AP = AB AR を表すとき, 点 R は, 2直線PQ と CD の交点であることから, 共線条件によっ ことを考える。 点Qは線分 ACの中点であることと AC の条件より, AQ = 1⁄AČ 2 =AB + AD ここで,点Rは直線PQ上にあるので AR=(1-s) AP+sAQ となる実数s が存在する。 また, 点Rは直線 CD 上にもあるので, =(1-s)x 24/AB+s (12/2 AB + AD = (+$$AB+SAĎ0 -s AB + sAD ...... ① AR=(1-t)AC+tAD ...... ② =(1-t) (3AB+2AD) +tAD 3 AB Lind = 3(1-t)AB+(2-t)AD ...... ③ よって, t= 5 + s=3(1-t) かつ s = 2-t 3 6 すなわち, s= 4 13 CR RD=t: (1-t) =4:9 となる実数tが存在する。 ここで、AB とAD は線型独立であるから ①③ より 22 4 13.1=1/350 t= ② P B A D R 2 AD A AB と AD を用いると、 与えられた関係式 AC=3AB +2AD をそのまま用いることがで きる。 AC=3AB +2AD B C AB と AD は線型独立な ので係数比較できる。 ②のtは, AR = AC+tCD により、 直線 CD を C(0), D (1) とする数直線と見た ときの点Rの座標を表す。

回答募集中 回答数: 0
数学 高校生

詳しく解説お願いします。 よろしくお願いします。

26 例題 7 二項係数の性質 (1 + x)” の展開式を利用して,次の等式を証明せよ。 (1) nCo+nC₁+nC₂+ • • •+nCn−1+nCn = 2" (2) nCo-nC1+nC2-‥‥+(-1)^-1nCn−1+(-1)*nCn=0x 思考プロセス すなわち 逆向きに考える (1), (②2)の式は,①のxにそれぞれ何を代入したものか? RICO $+B) <<noin (1+x)" = "Co•1"+ "C1"-1.x + "C2・1月-2x2+ ... +nCn-1・1・x"-1+nCm・x" ... »Co+nC1x+nC2x² + ··· +nCn-1x"−¹+nCnx” = (1+x)ª) ¨¨· D · Telpla Action>> 二項係数の和は、(1+x)” の展開式を利用せよ 二項定理により 解 二項定理を用いて, (1+x)" を展開すると (1+x)" = nCo+nCix+nCzx2+ SUNG (1) ① に x=1 を代入すると ..+nCn-1xn-1+nCnxn (1+1)" = nCo+nC1・1+nC2・1+ よって (2) ① にx= -1 を代入すると 練習 7 1513 (1−1)″ = nCo+nC₁(−1)+nC₂(−1)² + ... [ nCo+nC1+nC2+..+nCn-1+nCn = 2n @ $6€ + $$• ・+nCn-1・17-1+nCn1n nCo Point.... 二項係数の性質 (a+b)" の展開式の係数に現れる "Cy を二項係数という。 二項係数には,次のような性質がある。 よって n Co-nC1+nC2-‥..+(-1)^-1nCn-1+(-1)"nCn=0 ..+nCn-1(-1)n−1+nCn(-1)" (1) nCr = nCn-r (2) +1Cr+1=nCr+nCr+1 (3) nCo+nC₁+nC₂+ • • •+nCn−1+nCn = 2² (4) nConC₁+nC₂ — • • • + (−1)n-¹ nCn-1 + (−1)" nCn = 0 (5) C1+2C2+3mCs+..+(n-1)C1+nnCn=n2"-1 (80) = ( *(1-PSIT INSIT ) (1+x) の展開式の一般 項は Crx" である。 ① はどのようなxの値に ついても成り立つ。 5d² Jei TEATRE C (1+1)" = 2" ISITIS rが偶数のとき (-1)' = 1 rが奇数のとき (-1)'=-1 J (1) 18-01S (1+x)" の展開式を利用して,次の等式を証明せよ。 (1) C-2C1+2°C2-...+(-2)-1,C-1+(-2)"C=(−1)" (2) nCinC2 "C₁ + ² + (−1)n-1 ~Ce-1 + (−1) nCr 2 22 nCn−1 on-1² (>7 (1)) 例題7 (2) (問題7 (2)) PR (S) 1

回答募集中 回答数: 0
数学 高校生

⑵なのですが、興味本意でMP垂直ABだけを利用してAPを求めようという問題にして解きました。 それだと答えが違くなるのは普通ですか?自分の計算ミスや考え方が違いますか? ちなみにBP:PN=t:(1-t)にして解きました。 あともう一つですが、⑵のようなものに出会った場合... 続きを読む

例題 355 外心の位置ベクトル △ABCにおいて, AB=8,BC=7, CA = 5 とする。 辺ABの中点をM, 辺ACの中点をN, △ABCの外心をPとするとき、AB=1, AC=2と して、次の問いに答えよ.. 209 XOS JE (1) 内積 .1 (2) |考え方 (1) BC=AC-AB=C-1 であることを利用する. 解答 を求めよ. MP⊥AB,NP⊥AC を利用して, AP を , を用いて表せ。 (I) (2) Ap=s+tc とおいて MP・AB = 0, NP.AC=0 を計算し,s,tを求める. (1) |BCP²=|c-b³²=|c|³²-26•c+|6|² (2) 0-08 7²=52-20・C+82 より 20 AP= so+tc とおくと, MP=AP-AM=sb+tc-2b = (s-12) b + tc 20 S NP=AP-AN=sb+tc¬½c = sb + (t = 1/2 ) c MP⊥AB より, MP・AB = 0 だから, MP.AB={(s-2)6+tc}.b=(s— 2/2 ) b²+ tb •č S = 64(S-2) +20 =64s- +20t = 0 ・① 003より。 | 16s+5t=8 NP⊥AC より, NP・AC=0 だから, NP.AC= =20s +25t- ³•AČ={sb+(t—½)¢}·c=sb•ċ+(1—2 ) ¢² 1/12) = 0 (別解) AP = s + tc とおく. =0+A より, 8s+10t=5 ・ ①.②より,s=121.t=17/03 だから、AP=12/26 2/23 24 15 LXD 内積の性質より, AP・AM=4°=16, APAN=(-2)-25 ③,④より, s=i .③ APAN=(s6+tc). 12c=/1/2s62+1/21 CR +251-25 =10s + 2 4 2 14.1-13 だから、 15 24 =32s+10t=16 *** 8 M B 7 点Pは外心だから PM は ABの垂直 二等分線となる. つまり, MP⊥AB >30, MP•AB=0 内積の図形的意味 (p.586, p.628 したがって, AP・AM=(s6+tc)/12/6=1/12s16p+/12/16c Column 参照) 4 2 AP=¹16+ c 24 15 JP A N5 ① C 平面上に三 例 O.A-Bがあるとき ABIの点をPとす OP² = SONT EOB³ でできる。

回答募集中 回答数: 0