数学
高校生

数学の位置ベクトルで写真の赤線のsと(1-s)が何処のことを言ってるのかわからないので教えて下さい

2②2 2直線の交点の位置ベクトル, 線型独立 解答の手がかり AC が線型独立な AB と AD の線型結合で表されているので, AP. AQ, AR を AB と ADを用いて 表す てAB とADで2通りに表して係数比較することを考える。 AR が AB と AD の線型結合で表せれば, AR は AC と AD の線型結合で表せて, CR RD を求めることができるのである。 <解答> 点Pは辺ABを21に内分するから. de AP = AB AR を表すとき, 点 R は, 2直線PQ と CD の交点であることから, 共線条件によっ ことを考える。 点Qは線分 ACの中点であることと AC の条件より, AQ = 1⁄AČ 2 =AB + AD ここで,点Rは直線PQ上にあるので AR=(1-s) AP+sAQ となる実数s が存在する。 また, 点Rは直線 CD 上にもあるので, =(1-s)x 24/AB+s (12/2 AB + AD = (+$$AB+SAĎ0 -s AB + sAD ...... ① AR=(1-t)AC+tAD ...... ② =(1-t) (3AB+2AD) +tAD 3 AB Lind = 3(1-t)AB+(2-t)AD ...... ③ よって, t= 5 + s=3(1-t) かつ s = 2-t 3 6 すなわち, s= 4 13 CR RD=t: (1-t) =4:9 となる実数tが存在する。 ここで、AB とAD は線型独立であるから ①③ より 22 4 13.1=1/350 t= ② P B A D R 2 AD A AB と AD を用いると、 与えられた関係式 AC=3AB +2AD をそのまま用いることがで きる。 AC=3AB +2AD B C AB と AD は線型独立な ので係数比較できる。 ②のtは, AR = AC+tCD により、 直線 CD を C(0), D (1) とする数直線と見た ときの点Rの座標を表す。
08 回 ROBASJE AS 2 2直線の交点の位置ベクトル, 線型独立開栄一 四角形 ABCD は,関係式 AC = 3 AB+2 ADNYTHTHONI R を満たすとする。辺AB を 2:1に内分する点をP,線分 ACの中点をQとし、2直線PQ と CD の交点 をRとするとき, CR RD を求めよ。 4 × 80 = 1 Jovenj (orld) = Ã (on :).
数学 応用 大学受験

回答

まだ回答がありません。

疑問は解決しましたか?