学年

教科

質問の種類

数学 高校生

(2)なんでそうなるのかわかりません。説明して頂きたいです🙇🏻‍♀️

328 第9早 練習問題 3 (1)675の正の約数の個数とその総和をそれぞれ求めよ. (2)756n が平方数(ある整数の2乗で表される数)となる最小の自然数n を求めよ. 精講(1)は素因数分解を活用しましょう.素因数分解をするときは2,3, 5,7,…と小さい素数から順に割り切れる素数を探していくのが基 本です.3の倍数の判定条件が 「各桁の数の和が3の倍数」 であることを押さ えておくと便利です. (2)において,ある数が平方数になるということは,その数が全く同じ2つの数 に分割できるということです.そのためには, 「すべての異なる素因数を偶数 個ずつ持つこと」 が条件になります. 解答 (1) 675を素因数分解すると 675=3x52 3675 3)225 第2の倍数ではない 6+7+5=18 より3の倍数 2+2+5=9 より3の倍数 3 を何個取り出すかが 3) 75 7+5=12 より3の倍数 0~3個の4通り 5) 25 5の倍数 5 を何個取り出すかが 5. 0~2個の3通り ( 小さい素数から ココが素数になれ 順に調べる ばおしまい なので、約数の個数は 4×3=12個 その総和は 」と「大 (1+3+32+3)(1+5+52)=40×31=1240 (2)756を素因数分解すると 756×7 756n を平方数にするためには,すべての素因数が 2)756 2の倍数 偶数個になるようにすればよい. 2)378- -2の倍数 よって、かけるべき最小の自然数nは 3)189 -3の倍数 3) 63 -3の倍数 である. n=3×7=21 このとき 756×21=22×34×720 3) 21 -3の倍数 偶数 7 素数 女子() =(2×32×7)=1262 /

未解決 回答数: 1
数学 高校生

大至急です‼️ィの問題がわかりません! 解説を見たのですがイメージがしにくくて、、、 図有りなどで解説頂けると有難いです🙏🏻

基本 例題 14 0 を含む数字 0000 □個ある。そのうち3の倍数になるものは 個である。 基本 13 0, 1, 2, 3, 4から異なる3個の数字を選んで作る3桁の整数は,全部で CHART & THINKING 百 0 を含む数字の順列 最高位の数は0でないことに注意 (ア) 0 を含む5個の数字から、3桁の整数を作る。 何に注意すればよいだろうか? 百の位に 0 がくると, 3桁の整数にならない。 →5P3 を答えとするのは誤り! →まず, 百の位には 0 以外の4個の数字から Pan 田日 20以外の百に入れた数字を除く 4個から2個並べる 4通り 4P2 (通り) 1個選び,残りの位には百の位以外の4個の数字から2個取って並べるP (イ)3の倍数になる3桁の整数は,各位の数の和が3の倍数 (p.281 参照)。 更に, 0 を含むかどうかで場合分けして考える。 答 (ア) 百の位には0以外の数字が入るから 別解 そのおのおのに対して, 十, 一の位の数字の並べ方は,残 りの4個から2個取る順列で 4P2=4・3=12(通 よって, 求める整数の個数は 4×12=48 (個) ar 0, 1, 2, 34から3個取って並べる順列の総数は 5P3=5・4・3=60 (通り) ると この このうち, 百の位が0になるような3桁の整数は,全部で 4P2=4・3=12 (通り) 並 よって, 求める整数の個数は 60-12=48 (個) (イ) 0, 1,2,3,4のうち和が3の倍数になる3数の選び方は [1] {0, 1, 2}, {0, 2, 4} の2通り [2] {1,2,3}, {2,3,4} の2通り (C) SI- [1] 百の位は0でないから, 各組について, 3桁の整数は 2×2!=4 (個) [2] 各組について, 3桁の整数は 3!=3・2・1=6個) よって, 3の倍数になる3桁の整数の個数は 4×2+6×2=20 (個) 最高位の条件に注目。 積の法則。 4 右 最初は0も含めて計算 し、後で処理する方法。 012など最高位が0にな 0□□の形の数を引 く。 Aが3の倍数の判定法: XAの各位の数の和は 3の倍数である。 ←[1] 0を含む。 YO ← [2] 0 を含まない。 赤

回答募集中 回答数: 0