学年

教科

質問の種類

数学 高校生

kの値はどう計算したのですか?あと丸したところの傾きはどう計算したのですか?解説お願いします🙇🏻‍♀️

162 第9 交点を通る図形 重要 例題 34 kを定数とするとき, 直線 (k+2)x+(2k-3)y-5k+4=0はんの値に関わりな イ) を通る。 また, 2直線l1: 2x-3y+4=0, く,定点A (ア, l:x+2y-5=0 の交点を通り,直線3x+2y=0 に平行な直線は -8A 8 ウ x+y-オ=0である。 すべてのkについて 成り立つ→kについての恒等式 (58) POINT! f(x,y)+kg(x,y)=0 f(x,y)=0,g(x,y)=0 の交点を通る図形 解答kについて整理して 2x-3y+4+k(x+2y-5)=0 goto ① がんの値に関わりなく成り立つとき $50 = +1 ◆kについての恒等式。 2x-3y+4=0, x+2y-5=0 x=1, y=2 158 これを解いて よって, A (1,2) が, ① が通る定点である。 f(x,y)+kg(x,y) = 0 また ① は l1,l2 の交点を通る直線を表し, 整理すると の形をしている。 = (k+2)x+(2k-3)y-5k+4=0 Ta 3 k=2 のとき, ① は x=1 となり, これはx軸に垂直である。素早く解く! - 0で割れないため、 場合 よって,直線 3x+2y=0 と平行にはならないから,不適。 VOLT THE OCE 3 k+2 k=2のとき, この直線の傾きは 分けが必要だが 共通テ ストでは省略できる。 2k-3 ① が直線3x+2y=0に平行であるから k+2 3 ◆平行⇔ 傾きが等しい。 EVEDA COMO AS (2k-3 2,0)8(1- )A&➡ 66 よって 2(k+2)=3(2k-3) 13 ゆえに k= 素早く解く! 4 13 (x+2y-5)=0 よって 求める直線は 2x-3y+4+(x+2y-50 4 ゆえに 4(2x-3y+4)+13(x+2y-5)=0 よって 3x+2y-オ7=0 下皿 3x- 素早く 係数に文字が入った2つの直線の平行,垂直を考えるときは,次の公 解く! 式を利用するのが早い。 ℓ:ax+by+c=0,lz: azx+by+cz=0について円( l₁ // l2 ⇒ a₁b₂-a₂b₁=0, lilana+b1b2=0 これを利用すれば, (2+k)・23(2-3)-0が てこな == 「大)

回答募集中 回答数: 0
数学 高校生

これは何をしているのですか?

00000 X3/8 |重要 例題 164 三角形の面積の最小値 面積が1である△ABCの辺AB, BC, CA上にそれぞれ点D, E,F を AD: DB=BE:EC=CF:FA=t: (1-t) (ただし, 0 <t<1) となるように る。 (1) △ADF の面積をtを用いて表せ。 基本158 (2) △DEF の面積をSとするとき, S の最小値とそのときのtの値を求めよ。 指針 (1) 辺の長さや角の大きさが与えられていないが, △ABCの面積が1であることと、 △ABCと△ADF は ∠A を共有していることに注目。 RAHO △ADF == ADAF sin A 1/2/AD AABC= =1/12 AB・ACsinA (= 1), (2) △DEF=△ABC-(△ADF+△BED+△CFE) として求める。 ・・・・・・・・・! Sはtの2次式となるから, 基本形 α(t-p)'+αに直す。 ただしtの変域に要注意! 解答 (1) AD=tAB, AF=(1-t) AC 検討 であるから D 1-1 AADF= AD AF sin A 2 /F -t(1-t) AB AC sin A 2 AABC= -AB・ACsin A=1 2 よって AADF=t(1-t). ABAC sin A B C 1 1801-00 (*) 3t²-3t+1=3(t²-t)+1 =t(1-t) (2)(1) と同様にして ABEDACFE(1-t)=3{p-t+(1/2)^-1 (1) よって S=△ABC-(△ADF + △BED+△CFE) SS=3f-3+1 =1-3t(1-t)=3t²-3t+1=3t- 1 = 3 ( + - -1/2 ) ² + 1/ 1 (*) 1 ゆえに, 0<t<1の範囲において, Sは t=1/2のとき最小値- 1 をとる。 最小 (D,E,F がそれぞれ辺 AB, BC, CA の中点のとき最小となる) 1 1 2 1辺の長さが1の正三角形ABCの辺AB, BC, CA 上にそれぞれ頂点と異なる点 練習 ③ 164 D, E,F をとり, AD=x, BE=2x, CF=3x とする。 16 (1) △DEF の面積Sをxで表せ。 [類 追手門学院大] (2) (1) Sを最小にするxの値と最小値を求めよ。 p.264 EX120 1-t DE C Bt E1-t- 一般に AAB'C' △ABC 140 2007 B' AB' AC' AB AC A C' 基本 1辺の長さが60 M,NをOL=S を求めよ。 AOL 指針> ALMN に まず, 余弦 なお,正四 CHART 解答 I AOLMにおいて LM2=OL2+ON =32+42- OMN におい MN²=OM2+C ........ =42+22- AONLにおい NL2=ON2+C ゆえに よって

回答募集中 回答数: 0