学年

教科

質問の種類

数学 高校生

どうして14でははなく、28なのですか??

定数 体の体積は →問題 17 ると,体積 OS にすれ .IL から, w M-RT-RT-ART P MPV 混合気体 基本例題22 図のように, 3.0Lの容器Aに 2.0×105Paの窒素を, 2.0Lの容器Bに 1.0×10 Paの水 素を入れ, コックを開いて両気体を混合した。 温度は常に一定に保っておいた。 混合後 の気体について,次の各問いに答えよ。 (1) 窒素の分圧は何Paか。 (2) 全圧は何Paか。 (3) (4) 混合気体の平均分子量はいくらか。 考え方 (1) 混合後の気体の体積は , 3.0L+2.0L=5.0Lである。 (2) ドルトンの分圧の法則から、 P=PN2+PH2 (3) 分圧=全圧×モル分率から, モル分率= P 気体のモル分率はそれぞれいくらか。 例題 解説動画 成分気体の分圧 混合気体の全圧 (4) 平均分子量 M は各成分気 体の分子量×モル分率の和で求 められる。 N2 の分子量は28, H2の分子量は2.0である。 0.53g/L×8.3×10 Pa・L/(K・mol)×(273+27) K_ 3.0×10 Pa =44g/mol したがって, 分子量は41である。 A 13.0L = ■解答 (1) ボイルの法則から, 窒素の分圧 PN2 は , PN2= PIVL 2.0×105 Pa×3.0L V2 5.0L (2) 同様に, 水素の分圧 PH2 は, PIV1 1.0×105 Pa×2.0L V2 5.0L ⇒問題 223-224-225 -=0.75 コック B 2.0L =1.2×10³ Pa PH2= したがって, 全圧は, P=PN2+PH2 = 1.2×10Pa +4.0×10'Pa=1.6×10 Pa (3) N2…... 1.2×105 Pa 1.6×105 Pa =0.25 (4) M=28×0.75 +2.0×0.25=21.5=22 H2… -=4.0×10¹ Pa 状態 4.0×10¹ Pa 1.6×105 Pa 012 129 PV (1 (16)

解決済み 回答数: 1
数学 高校生

より、からの15+6t=10+9tの前の式からこの式になぜなるのか分からないので教えてください。

C1.53 空間のベクトルのなす角 COME とのなす角が等しくなるような実数t の値を求めよ。 小量 a=(4, 0, 3), b=(1,2,2),c=a+th について、とのなす角と 例題 解答 lal=√4°+0°+3°=5 |1|=√1242°+2°= 3 tab=4·1+0·2+3·2=10 ことのなす角をa.cとのなす角をAとすると、COS COSB-10 ca だから, c.b Tellal clo を満たす. 両辺に共通なので,c を計算する必要はない. こを成分で表さなくても... ディここで,c=a+1より Focus a(a+tb) a=lal²+ta·b =25+ 10t より, Sn+de+25+10t __cb=(a+tb)·b=a·b+t|b³|² =10+9t ことのなす角とことのなす角が等しくなるとき ca cb - Tellal Fello ##(0)9 3&50 15+6t=10+9t よって, 10+95 cl·5c-3eti nda 40 t= 3 **** ca Telläl を用いて表せばよい。 . t=3 à + 3/2b £₁ 1 = ²3² よって、より 50/3 c-b cb1 a=(a, a2, 3); = (bı,b2,63) のとき ab=abi+ab+a3b3 £=5;ð $=0-53)=131|18\ a=(a, a2,a3),i=b, b, bs) のときaとのなす角を0 ab abı+ab+a3b3 とすると, cos0= a√²+a₂²+a³√b²+b₂²+b³² 注》角の二等分線を作るには、2つのベクトルの長さをそろえて足せばよい。 41 5+ 6+ ことのなす角を α, ことのなす角をβと すると, cosa-=- 例題 C1.53 の場合,|a| = 5,1=3より方をすればフリー ともに長さが5となる. ca_) Tellal cos β= Tellol COS α = cosβ を満たす. C1-105 言 2 FREN 第4章

解決済み 回答数: 1
数学 高校生

121.2.イ 記述の場合、 「法5と3は互いに素だから、」 という記述は必要ですか??

494 演習 例題 121 合同式の性質の証明と利用 (1) p.492 基本事項の合同式の性質 2, および次の性質 5を証明せよ。 ただし は整数, m は自然数とする。 5aとが互いに素のとき ax=ay (modm) x=y (modm) (2) 次の合同式を満たすx を, それぞれの法mにおいて, x=a (modm)[aは より小さい自然数] の形で表せ (これを合同方程式を解くということがある)。 (ア) x+4=2 (mod6) (イ) 3x≡4 (mod 5 ) p.492 基本事項③3) 指針 (1) 方針は p.493 の証明と同様。 ■ (mod m) のとき, ■はmの倍数である。 合同式 加法・減法・乗法だけなら普通の数と同じように扱える (2) (イ)「4≡(mod5) かつが3の倍数」となるような数を見つけ, 性質5を適用する。 解答 (1) 2 条件から, a-b=mk,c-d=ml (k,lは整数) と表され a=b+mk, c=d+ml よって a-c=(b+mk)-(d+ml)=b-d+m(k-l ゆえに a-c-(b-d)=m(k-l 5 ax=ay (modm) ならば, ax-ay=mk(kは整数)と表 され a(x-y)=mk aとは互いに素であるから x-y=ml (lは整数) よってx=y (mod m) (2)(ア) 与式から x=2-4 (mod 6 ) -24 (mod6) であるから (イ) 49 (mod5) であるから, 与式は 法5と3は互いに素であるから 2040 よって a-c=b-d (mod m) x=4 (mod6) 3x=9 (mod 5) x=3 (mod 5) の倍数 → = ▲k(kは整数) <pg が互いに素でpk が α の倍数ならば、k はgの倍数である。 性質2. 移項の要領。 1-2-4-6 (6の倍数) また, 推移律を利用。 性質5を利用。 検討 合同方程式の問題は表を利用すると確実 (2)(イ)については,次のような表を利用する解答も考えられる。 別解 (イ) x=0, 1 2 3 4 について, 3xの値は右の表 のようになる。 3x=4 (mod5) となるのは, x=3のと きであるから x=3 (mod5) 注意 合同式の性質5が利用できるのは, 「a と が互いに素」であるときに限られる。 例えば, 4x4 (mod 6 ) ① については, 4 と法6は互いに素ではないから, ① より x≡1(mod6) としたら誤り! x 0 1 2 4x 0 x 0 1 2 3 4 3x 0 3 6 1 9=4 12=2 表を利用の方針で考えると、 右の表からわか るようにx=1, 4 (mod6) である。 x = (mod m) または x = (modm) を 「x=a, 6 (modm)」と表す。 ] a 3 5 4 8=2_12=0_16=4 20=2 4 (1) p.492 基本事項の合同式の性質を証明せよ。 練習 3 121 (2) 次の合同式を満たすx を, それぞれの法mにおいて, x=α (modm) の形で 表せ。 ただし,αはmより小さい自然数とする。 (ア)x-7=6 (mod 7) (1) 4x=5 (

解決済み 回答数: 1
数学 高校生

129. 記述これでも大丈夫ですか??

JUL 510 OS 00000 基本例題1291次不定方程式の応用問題 3で割ると余り, 5 で割ると3余り, 7で割ると4余るような自然数nで最小の ものを求めよ。 指針▷ 基本 127,128 が共通の数。 8が最小である。 3で割ると2余る自然数は 2,5, 8, 11, 14, 17, 20, 23, 5 で割ると3余る自然数は 3, 8, 13, 18,23, よって、「3で割ると2余り, 5 で割ると3余る自然数」を小さい順に書き上げると 3と5の最小公倍数 15 ずつ大きくなる。 A8, 23, 38, 53, 68, また, 7で割ると4余る自然数は B 4, 11, 18, 25, 32, 39,46,53, A,B から、求める最小の自然数は53 であることがわかる。 このように、書き上げによって考える方法もあるが,条件を満たす数が簡単に見つからな い (相当多くの数の書き上げが必要な) 場合は非効率的である。 -110/ そこで,問題の条件を1次不定方程式に帰着させ、その解を求める方針で解いてみよう。 CTORUTSJEFE 解答 nはx,y,zを整数として,次のように表される。 注意x+2=5y+3 3)=0 S&TS 5y+3=7z+4 n=3x+2, n=5y+3, n=7z+4 小 3x+2=5y+3 から 3x-5y=1 x=2, y=1は, ① の整数解の1つであるから 3(x-2)-5(y-1) = 0 すなわち 3(x-2)=5(y-1)x 3と5は互いに素であるからんを整数として, x-2=5kと表 される。よって x=5k+2(kは整数) ② bom) 3(5k+2)+2=7z+4 ② を 3x+2=7z+4に代入して ゆえに z=-8, k=-4 は、 ③の整数解の1つであるから 7(z+8)-15(k+4)=0 すなわち 7(z+8)=15(+4) 7と15 は互いに素であるから, lを整数として,z+8=157 と 表される。 よって z=151-8 (Zは整数) (Thom) これをn=7z+4に代入して n=7(157-8)+4=1057-528 最小となる自然数nは, l=1 を代入して 53 TE bom) 85-= として解いてもよいが,係 数が小さい方が処理しやす い。 このときy=3k+1 x-7z=2から 7z-15k=4...... ③③ A+ASA-=(A+10)-06-3(x-3)−7(z−1)=0 ゆえに, Zを整数として x=7l+3 これと x=5k+2 を等置し て 5k+2=7l+3 よって5k-71=1 これより, k, lが求められ るが, 方程式を解く手間が 1つ増える。 検討 百五減算 2+(3=376)00=1+00=178 ある人の年齢を3,5,7でそれぞれ割ったときの余りをa,b,c とし, n= 70α+216+15c とす る。このnの値から 105 を繰り返し引き, 105より小さい数が得られたら、その数がその人の年 齢である。 これは 3,5, 7で割った余りからもとの数を求める和算の1つで、 百五減算と呼ばれ る。なお,この計算のようすは合同式を用いると,次のように示される。 求める数をxとすると, x=a (mod3), x=6 (mod5) x=c (mod7) であり, n=70a=1•a=a=x (mod 3), n=21b = 1.b = b = x (mod 5), n=15c=1+c=c=x (mod 7) よって, n-xは3でも5でも7でも割り切れるから, 3, 5, 7 の最小公倍数 105 で割り切れる。 ゆえに,を整数として, n-x=105k から x=n-105k このkが105を引く回数である。 TRON 練習 3で割ると2余り,5で割ると1余り, 11で割ると5余る自然数nのうち (3) 129 1000 を超えない最大のものを求めよ。 どのよう できない 3m よー 解答 mnは食 [1] n= よって, x=3m- [2] n= ここで. よって ......) [3] n= ここで よって ......) [1]~[3] 形に表す よって, したが一 (検討 次ペー しかし 然数も なお、 a

解決済み 回答数: 1