学年

教科

質問の種類

数学 高校生

チャート式の問題です。波線部のところがわかりません。6C3は、同様に確からしい場合の確率というのがなぜかわかりません。 どなたか教えてください🙇‍♀️

336 重要 例題 50 平面上の点の移動と反復試行 右の図のように、東西に4本,南北に4本の道路が ある。地点Aから出発した人が最短の道順を通って 地点Bへ向かう。 このとき,途中で地点Pを通る確 率を求めよ。 ただし,各交差点で,東に行くか, 北 に行くかは等確率とし、一方しか行けないときは確 率1でその方向に行くものとする。 CHART & T HINKING 求める確率を A→P→Bの経路の総数 A→Bの経路の総数 2 12/×/1/23 X から, この理由を考えてみよう。 は、どの最短の道順も同様に確からしい場合の確率で,本問 は道順によって確率が異なるから, A→Bの経路は同様に 確からしくない。 例えば, A↑ →→→P↑↑B の確率は A→→→↑P↑↑B A→→→1P11B の確率は 12/3x/1/2×1/2×1×1×1=1/3 8 よって, P を通る道順を, 通る点で分けたらよいことがわかるが,どの点をとればよいだろ うか? 1 3 + 8 16 x 1/3×1×1×1=1/13 解答 右の図のように,地点 C C', P'をとる。 Pを通る道順には次の2つの場合があり,これらは互いに 排反である。 [1] 道順A→C→C→P→B この確率は [2] 道順A→P'′→P→B この確率は sca (12/12 (1/2)×1/1/2×1×1=16 3C₂ ) よって, 求める確率は 5 16 4C3×1 とするのは誤り! 6C3 8 3 16 B A ●基本48 B P' P A C' C |C→Pは1通りの道順で ることに注意。 [1] →↑↑↑ と進 [2] ○○○↑↑と進 ○には2個と1 が入る。

回答募集中 回答数: 0
数学 高校生

なぜ最小値が2以下である場合は反復試行の確率の公式を使わなきゃいけないのに、最小値が3以上である場合は階乗で済ませられるんですか?

ん。 取り出すとき、 これらは互い る事象をA となる。 47 91 利用す うこと。 一の2 通りの または んで 例 42 のさいこ 2以下と3以上などが さいころの出る目の最小値 23を繰り返し3回げるとき、次の確率を求めよ。 目の最小値が2以下である確率 目の最小値が2である確率 となり, 計算が大変。 2以下の目が1回 2回 3回出る場合の確率を考え,それらの和を求めればよいのだが、 THINKING 「~以下」 には 余事象の確率 ~以上」 最小値が2以下となるのはどのような場合があるかを調べてみよう。 CHART 問題文は「3回のうち少なくとも1回は2以下の目が出ればよい」 といい換えることが 実際に計算すると, できるから、余事象の確率が利用できそうだと考えるとよい。 出る目がすべて2以上ならよいのだろうか? (2) 最小値が2となるのはどのようなときだろうか? 右の図のように、出る目がすべて2以上, すなわち最小値が 以上の場合には,最小値が2でない場合が含まれているこ とがわかる。 3回のうち少なくとも1回は2の目が出なければならない から、余事象の確率が利用できないだろうか? Ci×2×42+3C2×23×4+2 63 最小値が3以上」 であるから, A の起こる確率は 43 P(A) = 6³3 = (4) ³ = 27 8 - よって, 求める確率は 8 P(A)=1-P(A)=1- 19 27 27 CORNE 1個のさいころを繰り返し3回投げるとき, 目の出方は 63 TRON SHA (1) A: 「目の最小値が2以下」 とすると, 余事象Aは「目の 考えても同じこと。 (2) 目の最小値が2以上である確率は よって, (1) から, 求める確率は 1258 61 216 27 216 = (2) 125 63 216 最小値が 2以上 最小値が 3以上 最小値が2 inf 「3個のさいころを同 時に投げる」 ときの確率と 事象と確率の基本性質 3以上の目は、3,4,5, 6の4通り。 3回とも2以上 6以下の 目が出る確率。 PRACTICE 42 ③ 3 UNSHBANC To 1個のさいころを繰り返し3回投げるとき,次の確率を求めよ。 (1) 目の最大値が6である確率 ← (最小値が2以上の確率) - (最小値が3以上の確 率) (2) 目の最大値が4である確率

回答募集中 回答数: 0
数学 高校生

問5でなぜ速さが一定となるのでしようか。起電力と誘導起電力が等しくなったのちも、どうせ導体棒には下向きの重力が働いて下向きの加速度が存在すると思うのですが、、

全統模試】 数αは0 Jo 1+x² す定数とす C2:y 有してい 第1回転 全統検 全統 2020 3 (配点33点) 図1のように、鉛直上向きで磁束密度の大きさがBの一様な磁場中に、2本のなめ らかな導体レールXYが開隔で平行に置かれている。2本のレールの左側は水平で1. 同一水平面内にあり、途中から水平面となす角が0となるように傾斜している。水平 (1 部分の左端には、抵抗値R の抵抗R. 切り替えスイッチ S. 起電力の電池Eが接続 されている。 レール関には、長さん抵抗値 R. 質量mの金属棒PP' がレールに垂直 に設置されている。 金属棒PP' は, レールと垂直な姿勢を保ったまま。 レールから外 れることなくなめらかに動くことができる。 抵抗Rおよび金属棒PP 以外の電気抵抗 は無視でき,また, 電流が作る磁場の影響も無視できるものとする。 重力加速度の大き さをgとして, 以下の問に答えよ。 RIIT レール Y 111 R, m レールX 図1 切り替えスイッチSをaにつなぎ, レールの水平部分で金属棒PP'に右向きの初速 を与えたところ、 やがてPP'はレールの傾斜部分に達することなく, 水平部分で 静止した。 問1 金属棒PP' の速さがとなったときを考える。 このとき、 金属棒PP' をP'か Pの向きに流れる電流の大きさをIとする。 (1) 金属棒PP' に生じる誘導起電力の大きさを, B, を用いて表せ。 (2) 抵抗 R と金属棒PP' からなる閉回路について, キルヒホッフの第2法則を表 す式を書け。 R, I L, B, を用いて表せ。 (3) 金属棒PP' の運動方程式を書け。 ただし, PP' の加速度は右向きにaとし a LLBを用いて表せ。 (4) 加速度αを, m, R, LB, を用いて表せ。 問2 金属棒PP' が動き出してから静止するまでの間に、 抵抗 R で発生したジュール 熱を求めよ。 次に, 切り替えスイッチSをbに接続し, 金属棒PP' をレールの水平部分で静かに 放す。 このとき, 金属棒PP' は傾斜部分に達する前に一定の速さとなり、その後レー ルから離れることなく傾斜部分を運動するようになった。 問3 金属棒PP' の水平部分での一定の速さを求めよ。 問4 傾斜部分を運動し、金属棒PP' の速さがとなったとき、 PP' の加速度を求めよ。 ただし、加速度は斜面に沿って下向きを正の向きとする。 5 やがて金属棒 PP は傾斜部分で一定の速さとなる。 このときの電池の供給電力 をW, 抵抗 R と金属棒PPでの消費電力の和をPとする。 一定となった速さを、 W, P.m, g, eを用いて表せ。 usina ひひ V=UBX 30 IBR 運動方程式 ・3 →ひ 5, -B 運動方程式 usont (2) ZRI=ひBℓ (3) ma=-IBR (4) 3 問2.RとPで発生したジュール熱の和は1/21m² どちらも抵抗値が同じなのでRでのジュール熱は Q = = = =^ mus ² = = myst 3, BO aBl →F md = ミラデ+I'Bl TB 一定の速さ⇒ al=0. E Bl a=- DATE IBT ucose [Bl coso UB²³1² 2m² 導体棒の速さがひとなった時 ザックの法則 E-UBX= ZRI! 4 3 E ・千 mgy PPに流れる電流ⅠはRRI=E-UBWSO Ⅰ = (E-uplus) Bl 2R 4 a's (E-VB) Bl 2m ma= mgsing + IB co so a= gsind t 15ftinec w+msing xひたエレン ==ma². (E-valcoso) By coso 2 91= Wil cost ネルギー保存 (Wingsing. u = (P) P-W mgsing 2 辞ックのし 仕

回答募集中 回答数: 0