学年

教科

質問の種類

数学 高校生

解説をみてもよくわかりません 解説お願いします

-20 基本例 例題 54 平面上の点の移動と反復試行 右の図のように,東西に4本, 南北に5本の道路がある。 地点Aから出発した人が最短の道順を通って地点Bへ 向かう。このとき,途中で地点P を通る確率を求めよ。 ただし,各交差点で, 東に行くか, 北に行くかは等確率と し,一方しか行けないときは確率1でその方向に行くも のとする。 A 基本 52 重要 55 指針 求める確率を A→P→Bの経路の総数 A→Bの経路の総数 から, これは,どの最短の道順も同様に確からしい場合の確率で,本間は道順によって確率 5C2X2C2 7C3 とするのは誤り! 00000 P B 重要 右図の 出たら 別に 「たら れぞ Aは う確 金 が異なる。 例えば, A111→ →→P→→ Bの確率は C D P B 11 1 ・1・1・1・1= 222 A→1→11P 11 Bの確率は 111 11 1 ・1・1= A 2 2 2 22 32 XUS したがって,Pを通る道順を, 通る点で分けて確率を計算する。 右の図のように,地点 C, D, C′', D', P'をとる。 解答 P を通る道順には次の3つの場合があり,これらは互いに 排反である。 D P B C D' P' [1] 道順 A→C→C→P この確率は 1/2x/121x1/2×11=(1/2)=1/1/2 A [2] 道順 A→D→D→P この確率は sc.(1/2)(1/2)x1/2×1=3 (1/2)=1/4 3 16 [3] 道順 AP′'→P [1] ↑↑↑→→と進む。 [2] ○○○と進む。 この確率はC(1/1) (12/12 × =6 6 2 32 よって、求める確率は 1 3 6 + 16 8 16 32 32 ○には,1個と 12個が 入る。 [3] 〇〇〇〇と進む。 ○には、2個と12個が 2 入る。 練習 右の図のような格子状の道がある。スタートの場所か ③ 54 端で表が出たときと,上の端で裏が出たときは動かな いものとす み,裏が出たら上へ1区画進むとする。ただし,右の 表が出たら右へ1区画進 ら出発し,コインを投げて, ゴール A 解答

回答募集中 回答数: 0
数学 高校生

答えがこれであっているか教えてください🙇

51 (木) まずは小問集合。 大事な問題は繰り返しやって、 自信をつけていきましょう。 次の を正しくうめよ。 (1) 不等式3(x-2) <2x-5…① の解は(ア)である。 また,不等式①を満たすことは,x<0であるための(イ)。 (イ)に当てはまるものを,下の①~④のうちから1つ選べ。 ① 必要十分条件である ② 必要条件であるが, 十分条件ではない 十分条件であるが, 必要条件ではない ④ 必要条件でも十分条件でもない (2) 次のデータは、あるクラス10人の数学の小テストである。 7,5,8,6,7,8,10,4,3,9 このとき,中央値は (ウ) であり,第1四分位数は(エ)である。 (3)男子2人、女子5人, 計7人の生徒がいる。 この中から委員3人を選ぶ 方法は、全部で (オ) 通りあり、このうち少なくとも1人は男子である 選び方は、全部で (カ) 通りある。 (4) (2x-y) の展開式におけるxyの係数は (キ)である。 また、 (x+2y-3z)の展開式における xy'z の係数は (ク)である。 (1) 3(x-2)<2x-5 3xc-62x-5 20 6.5.4×80303 (4)6G(2x)(-\パー(54 xC1(P) ③- ③ -(1) キ (2) 1,3,4,5,6,7,7,9,10 中央値 6.5-) # 第1四分位数4(土) 4. -1609343 プリシの係数は160(t) また、{(x+2%)-3/24の展開式における 窓の係数は、 4C1=4 (x+2g)におけるxyの係数は 3C2.2°=3×4 (3)7C3 7.65 =35通り(オ) また、少なくとも1人は男子なのは 38.5 6C2 15通り(カ) 入り サ サ =12. (xy2zの係数は4×12=2817

回答募集中 回答数: 0