学年

教科

質問の種類

数学 高校生

囲った部分なぜ、式が変わるのか理解できません。 2k-1と2’k-1のやつです。

1 2 ZZZ 初項から第210項までの和を求めよ。 解答 指針 分母が変わるところで区切りを入れて,群数列として考える。 分母: 1|22|3, 3, 34, 4, 4,4|5, 1個 2個 3個 4個 第n群には、分母がnの分数がn個あることがわかる。 分子: 12,3|4,5,67, 8, 9, 10|11 分子は,初項 1,公差1の等差数列である。 すなわち,もとの数列の項数と分子 は等しい。 まず,第 210 項は第何群の何番目の数であるかを調べる。 分母が等しいものを群として,次のように区切って考える。 8 9 67 5 10|11 1 | 2 34 12'23'3' 3 4'4'4' 5 第1群から第n群までの項数は 1+2+3+ ・・・・..+n= n(n+1) =1/√n(n²+1)÷n=² n²+1 2 第210項が第n群に含まれるとすると (n-1)n <210≤ n(n+1) よって (n-1)n<420≦n(n+1) (n-1)n は単調に増加し, 19・20=380, 20・21=420 である から ① を満たす自然数nは n=20UH また,第 210 項は分母が 20 である分数のうちで最後の数 1/2 ・・20・21=210 である。 ここで,第n群に含まれるすべての数の和は 1/27 12.11/2n(n-1)+1}+(n-1)・1) ÷n ゆえに, 求める和は 20k2+1 20 2+¹ -12 +21)-(20-21-41 +20) ²² k=1 2\k=1 .=1445 k=1 [類 東北学院大 ] ...... 練習の累康を分母とする既約分数を,次のように並べた数列 ③ 30 13 2'4'4'8' 8 8 768.1/16 3 5 う " 16'16'16' について、第1項から第100項までの和を求めよ。 1 3 5 いて、 もとの数列の第k項 分子がんである。ま 群は分母が 個の数を含む。 これから第n群の の数の分子は、 n(n+1) は第群の数の分 子の和→ 等差数列の n{2a+(n-1)d} 15 1 16' 32 【類岩手大】 P.460 EX 自然委 (1) 大 料 (2) 1 る 指針

回答募集中 回答数: 0
数学 高校生

(1)の回答で、OC2が何故正方形の対象軸になるかわからないです。教えて下さい

110 第3章 図形 2の正三角形OAB と3つの二等辺三角形 COA, C2AB, Cabo 1辺6の正方形 PQRS の折り紙がある。 下図のように、 以下の問いに答えよ.ただし, AB は PQ と平行とする。 をかいて切り取り, 三角錐を組み立てることにする.このとき、 63 立体と展開図 (1) 辺ABの中点をM, 直線ABと辺 QR の交点をDとするとき、 6 MD, BD の長さを求めよ。 S (2) CD, BC の長さを求めよ.. (3) 三角錐において, Cから △OABに下ろした垂線の足 をHとするとき, CHの長さ を求めよ. (4) 三角錐 C-OAB の体積V を求めよ. 精講 P A27B D C2 空間図形を考えるときの基本は, できるだけ平面図形としてとらえること R Satin C3 A STSMARTCO だから、立体と展開図の2つをにらみながら解答をつくっていきます (1),(2) まず,必要な部分だけをぬき出した図をかくことが大切です。 次に,直角がたくさんあるので,直角三角形をみつけて, 三平方の定理 三角比の利用を考えます (61). (3) 四面体 C-OAB の条件から, C から底面に下ろした垂線の足Hは△OAB の外心です (62) , △OABは正三角形なので, Hは重心でもあります。 ま た, 垂線を下ろしているので, (1), (2)と同様に直角三角形に着目します。 解答 (1) OC2 は正方形の対称軸で,Mは線分 OC2 上にあるので, MD=123×6=3 MB = 1 だから, BD=3-1=2 (2)△OACと△BAC において C A M あ BA国道 B B

回答募集中 回答数: 0