学年

教科

質問の種類

数学 高校生

⑶にて x=-1では不連続にならないのですか? 確かにlim[x→-1+0]f(x)=f(-1)は成り立ってますけど、 その負側ではすぐに途切れているので不連続だと思いました。

基本(例題 56 関数の連続 不連続について調べる -1≦x2 とする。 次の関数の連続性について調べよ。 (1) f(x)=x|x| (2)g(x)=-1 (x-1)2 (3)h(x)= [x] ただし,[]はガウス記号。 (x+1), g(1)=0 P.97 基本事項 重要 57, 58、 指針 関数 f(x)がx=αで連続limf(x)=f(a)が成り立つ。 また, f(x) がx=αで不連続とは [1] 極限値 limf(x) が存在しない XIA [2] 極限値 limf(x) が存在するが limf(x)=f(a) XIA のいずれかが成り立つこと。 解答 x-a 関数のグラフをかくと考えやすい。 099 2章 関数の連続性 (1) x>0 のとき f(x)=x2 x<0 のとき f(x)=-x2(1),(2)多項式で表された よって limf(x)=limx2=0, x+0 x+0 limf(x) = lim(-x2)=0 x-0 x→0 0 また f(0)=0 ゆえに limf(x)=f(0) よって, x=0で連続であり -1≦x≦2で連続。 (2) limg(x)=lim =8 x→1 x-1 (x-1)² 極限値 limg(x) は存在しないから 関数は連続関数であるこ とと p.97 基本事項 1 ③ に注意。 関数の式が変わ る点 [(1) ではx=0, (2) ではx=1] における連 続性を調べる。 なお (3) では区間の端点での連続 性も調べる。 x→1 -1≦x<1,1<x≦2で連続; x=1で不連続。 (3) -1≦x< 0 のときん(x)=-1, 0≦x<1のとき h(x)=0, [x] は x を超えない最大 の整数。 1≦x<2のとき h(x)=1, h(2)=2 よって limh(x)=-1, limh(x) = 0 ゆえに, 極限値limh(x)は存在しない。 x-0 x+0 x→0 limh(x)=0, limh(x)=1 ゆえに, 極限値 limh(x) は存在しない x→1-0 x→1+0 limh(x)=1, h(2)=2 X-2-0 x→1 ゆえに lim h(x)+h(2) x2-0 よって -1≦x< 0, 0<x<1, 1 <x<2で連続 ; x = 0, 1, 2で不連続。 (1) f(x)* 4 (2) g(x) 14 0 2 x -1 0 1 1 2 X (3) h(x) 入らない 2 1 fm?= f(-1) 12 -1 スー1+0 0 1 2 -1

未解決 回答数: 1
数学 高校生

最後の答えの部分なんですけど、なんでaに5と-5が=として含まれるんですか?含まれたらこたえが四つになりませんか?

例題 重要例 120 連立2次不等式が整数解をもつ条件 000 xについての不等式x-(a+1)x+α < 0, 3x2+2x-1>0 を同時に満たす整数x がちょうど3つ存在するような定数αの値の範囲を求めよ。 指針 [摂南大〕 基本 37, 117 ①まず,不等式を解く。 不等式の左辺を見ると、2つとも因数分解ができそう。 なお,x2(a+1)x+α<0は文字αを含むから,αの値によって場合を分ける。 ②数直線を利用して、題意の3つの整数を見定めてαの条件を求める。 CHART 連立不等式 解のまとめは数直線 解答 x²-(a+1)x+a<0 を解くと a<1のとき a<x<1 a=1のとき 解なし α>1のとき 1 <x<a 3x2+2x-1>0を解くと (x-a)(x-1)<0 から ① (x+1)(3x-1)>0から x<-1, < x ...... ② 3 ① ②を同時に満たす整数xがちょうど3つ存在するの は α <1 または α>1 の場合である。 02 (1 α=1のとき, 不等式は (x-1)<0 これを満たす実数 x は 存在しない。 実数 A に対し A≧0は常に成立。 A'≦0 なら A=0 A'<0 は 不成立。 [1] α <1のとき 3つの整数xは x=-4, -3, -2 よって -5≦a-4 [2] α>1のとき 3つの整数xは x=2,3,4 [1] [2] -51-4-3-2-1 0 1 x a 3 '13 -101 2 4 x よって 4<a≦5 小 1 a 3 [1], [2] から, 求める α の値の範囲は -5≦a<-4,4<a≦5 3章 <-5<a<-4としないよ うに注意する。 a<x<-1の範囲に整数 3つが存在すればよいか ら, α=-5のとき, -5<x<-1となり条件 を満たす。 [2]のα=5のときも同 様。 13 2次不等式 不等号にを含むか含まないかに注意 上の例題の不等式が x2-(a+1)x+a≦0,3x2+2x-1≧0となると, 答えは大きく違ってく る (解答編 p.96 参照)。 イコールがつくとつかないとでは大違い!! -850 (0)=(x2) xについての2つの2次不等式 x²-2x-80,x2+(a-3)x-3a≧0 を同時に満たす整数がただ1つ存在するように, 定数 αの値の範囲を定めよ。 p.219 EX86

解決済み 回答数: 1
数学 高校生

この問題の、波線が引いてある部分って、因数分解する時に、iが入ってこないように(実数の範囲で因数分解)するために、√内が2乗の形にならないといけないってことですか?

敦 ) 分解。 分解。 さいように 因数分解ができるための条件 重要例題 44 基本43 x2+3xy+8y2-3-5y+kがx,yの1次式の積に因数分解できるとき,定数k の値を求めよ。 また, その場合に,この式を因数分解せよ。 〔東京薬大〕 指針 与式が x,yの1次式の積の形に因数分解できるということは, (与式)=(ax+by+c)(px+qy+r) 解答 の形に表されるということである。 恒等式の性質を利用 (検討 参照) してもよいが,ここで は,与式をxの2次式とみたとき, = 0 とおいたxの2次方程式の解がyの1次式で なければならないと考えて,kの値を求めてみよう。 ポイントは,解がyの1次式であれば,解の公式における内がyについての完全平 方式となることである。 P=x2+3xy+2y2-3x-5y+kとすると P=x2+3(y-1)x+2y2-5y+k P=0を x についての2次方程式と考えると,解の公式から x2の係数が1であるから, xについて整理した方がら くである。 x=-3(y-1)±√9(y-1)2-4(2y2-5y+k) 2 _-3(y-1)±√y2+2y+9-4k 2 Pがxyの1次式の積に因数分解できるためには、この解が 1次式で表されなければならない。 y よって、根号内の式y2+2y+9-4k は完全平方式でなければな らないから,y2+2y+9-4k=0 の判別式をDとすると D/4=12-(9-4k)=4k-8=0 ゆえに この2つの解をα β とす ると, 複素数の範囲で考え て P=(x-α)(x-B) と因数分解される。 k=2 < 完全平方式 ⇔=0が重解をもつ ⇔判別式 D=0 -3(y-1)±√(y+1)。 _ -3y+3±(y+1) このとき x= 2 すなわち x=-y+2, -2y+1 よって 2 P={x-(-y+2)}{x-(-2y+1)}=(x+y-2)(x+2y-1) 恒等式の性質の利用 x2+3xy+2y2=(x+y)(x+2y) であるから,与式がx、yの1次式の積に因数分解できるとする と, (与式)=(x+y+a)(x+2y+b) ・・・・・・① と表される。 ①は,xとyの恒等式であり, 右辺を展開して整理すると (与式)=x2+3xy+2y2+(a+b)x+(2a+b)y+ab となるから、両辺の係数を比較して これから,kの値が求められる。 a+b=-3,2a+b=-5, ab=k A 練習 次の2次式がxyの1次式の積に因数分解できるように、定数kの値を定めよ。 +44 また、その場合に,この式を因数分解せよ。 (1)x2+xy-6y2-x+7y+k (2)2x2-xy-3y²+5x-5y+k 73 2章 9解と係数の関係、解の存在範囲

解決済み 回答数: 1