学年

教科

質問の種類

数学 高校生

例題190に関して、グラフの対称性を利用して範囲を絞っていることはわかるのですが、その際θ=0およびπにおいてなぜ微分可能なのでしょうか。 188と同様の性質から、範囲を絞っていると推測しているのですが、188で x=2πのときに微分ができないならば、190のθ=πについて... 続きを読む

重要 例題 190 関数のグラフの概形 (4) 媒介変数表示 曲線 x=cos o y=sin20 指針 基本は 0の消去。 y2=sin 20=4sin²0cos20=4(1-cos²d) cos'日から,y'=4x2(1-x2) となり,前ページのようにして概形をかくことができる。 しかし、媒介変数が簡単に消去できないときもあるので,ここでは, 媒介変数の変化に伴うx, y それぞれの増減を調べ, 点 (x,y) の動きを追う 方針で考えてみる。 まず, 曲線の対称性を調べる。 解答 cos O, sin 20 の周期はそれぞれ2π, πである。 x=f(0), y=g(0) とすると, f(-8)=f(0),g(-8)=-g(0) であるから, 曲線はx軸に関して対称である。 したがって, ① の範囲で考える。 ① の範囲でf'(0) = 0 を満たす 0 の値は 0 ƒ'(0) x f'(0) = - sine, g'(0) = 2cos20 g'(0) y (グラフ) 0 0 1 (−T≦O≦π) の概形をかけ (凹凸は調べなくてよい)。 _g' (0) = 0 を満たす 0の値は 4'4 ① の範囲における0の値の変化に対応した x,yの値の変化は, 次の表のようになる。 YA 1 : T x ← + + 1 √2 0 ↑ 1 y グラフ π 4 ↑ : ↓ π 2 0 ↓ ↑ - : ← t T ...... 0=0, π 0= 1 √2 0 ↓ 0 ↓ -1 ← π 3 π (*) I π T ← + ← π よって, 対称性を考えると, 曲線の概形は、 右の図。 注意 1. 表の←はxの値が減少することを表す。 また ↑ ↓ はそれぞれyの値が増加, 減少することを表す。 意 2. グラフの形状を示す矢印, , , は x,yの増減 に応じて、下の表のようになる。 0 -1 + 基本 187,188 0 (*) 0=α に対応した点を (x,y) とすると,0=-α に対応した点は(x,y) よって, 曲線はx軸に関し て対称である。ゆえに, 0≦OSTに対応した部分と 00に対応した部分 は,x軸に関して対称。 √2 8=R 0 21 8= T! 1 A=1 v2 100 -1 1

回答募集中 回答数: 0