学年

教科

質問の種類

数学 高校生

ケコのところです 解き方は理解して自分で解けたのですが、解説『3枚目の写真)でQLをxとおくと合ったのですが、なぜそこをxとしたのですか?APとAQがわかっててQLだけわからないからそうしたのですか? 当たり前のことを聞いてしまってたらすみません。 どなたかすみませんがよろ... 続きを読む

第1問 (配点 20) (全問答 ) 行されたマークして △ABCの辺BC上に点L, CA 上に点M, 辺 AB上に点Nをとり,ALとCNO 交点をF.ALとBM の文点を Q. BV と CN の交点をRとするとき、 えよ。 (1) 図1のような△ABCにおいて, 四角形 APRM, 四角形 BQPN, 四角形 CRQLO 三つの四角形がそれぞれ同時に円に内接する場合があるかどうか調べよう。 ウ ア の解答群 (同じものを繰り返し選んでもよい。) ZMAP ① ZRMA ② ZNBQ ③ ZPNB ZLCR ⑤ ZQLC より CMAD ∠NBQ ∠PRQ + ∠QPR + ∠PQR = 180° CLCR 四角形 APRM が円に内接するとき, 四角形 BQPN と四角形 CRQLの二つの四角 形が両方ともそれぞれ円に内接すると仮定すると、①〜③と ア + イ + ウ =180° として答えな であるが M ア + イ + ウ < ∠BAC + ∠ABC + ∠ACB = 180° より 答えてはいけません ア + イ + ウ < 180° ③ N P MATEM となり,④と⑤は矛盾する。 Q R したがって, 四角形 APRM が円に内接するとき, 四角形 BQPN と四角形 CRQL 10. B C の二つの四角形が両方ともそれぞれ円に内接する場合はないことがわかる。 L 図1 ∠PRQ=ア 0 四角形 APRM が円に内接するならば が成り立ち、四角形BQPN が円に内接するならば ∠QPRイ 2 が成り立ち、四角形 CRQL が円に内接するならば また, 四角形 APRM と四角形BQPNがそれぞれ円に内接するとき, ることがわかる。 I であ ② ∠PQR ウ 4 が成り立つ。 .. ③ ③ (数学A 第1問は次ページに続く。 I の解答群 O AB = AC ① AB=BC AB = AM ④AC = AN 2 AC = BC (5) AM = AN (数学A 第1問は次ページに続く。)

解決済み 回答数: 1
数学 高校生

複素数平面の問題で分からないところがあります。 [3]∠Cが直角のとき z=-1±i/2 となる理由がわかりません。

50 50 直角二等辺三角形をなす 3点 ( 2 ) ■基礎例題 23 発展 例題 28 複素数zの虚部が正の数であり, 3点A(z), B(22), C (23) は直角二等辺三 発 角形の頂点である。このとき,ぇを求めよ。 CHARL & GUIDE 直角二等辺三角形をなす3点 (S) + の回転なら±i倍 例題 23 と同様に,直角になる角が∠A, B, ∠Cのときに分けて考える。 π 直角を挟む 2辺→ 1辺を,直角の頂点を中心に りの1辺に重なるととらえる。 ・または- - 2 2 π だけ回転すると残 (1) (S) ■解答 [1] y [1] ∠A が直角のとき AC⊥AB, AC=AB から z³-z=±i(z²-z) A-1 の ゆえに z(z-1)(z+1)=±iz(z-1) -1 0 2 1 条件より z=0, z≠1 であるから,両辺をz (z-1) で割って A -2B z+1=±i よって z=-1±i の虚部は正の数であるから z=-1+i [2] y 1A [2] ∠B が直角のとき BC⊥BA, BC=BA から ぷーズ=±i(スー22) B [1] と同様にして z=Fi -1 の虚部は正の数であるから z=i [3] ∠Cが直角のとき -1 C CA⊥CB, CA=CB から スープ=±i(2-2) [3] [1] と同様にして A (株 12 1+z=iz ゆえに 1±à 2=-- 14 C の虚部は正の数であるから 計 2000-2 1 0 4 11 1 B 2 ④ EX 28 複素数平面上に相異なる3点A(Z), BI (2) S(Z)と する複素数の2乗が表す3点A( (1) この点に対応

解決済み 回答数: 1
数学 高校生

(2)です。 「各辺を加えて」の作業をしたら、等号の=は消えるというルールはありますか? 答えが<=ではなく<なのが理解できませんでした、🥲

例題 33 不等式の性質と式の値の範囲 (2) 65 00000 ①① yを正の数とする。 x, 3x+2y を小数第1位で四捨五入すると,それぞれ 6, になるという。 xの値の範囲を求めよ。 (2) yの値の範囲を求めよ。 ・基本 32 1 章 針 まずは,問題文で与えられた条件を, 不等式を用いて表す。 例えば,小数第1位を四捨五入して4になる数αは, 3.5以上 4.5未満の数であるから, αの値の範囲は3.5≦a <4.5 である。 (2) 3x+2yの値の範囲を不等式で表し, 3xの値の範囲を求めれば, 各辺を加えるこ とで2yの値の範囲を求めることができる。更に、各辺を2で割って, yの値の範囲 を求める。 (1) xは小数第1位を四捨五入すると6になる数であるか ら 5.5x6.5 ① (2) 3x+2yは小数第1位を四捨五入すると21 になる数で 5.5≤x≤6.4, 5.5≤x≤6.5 などは誤り! 41次不等式 あるから 20.5≦3x+2y<21.5 ...... ② ② ① の各辺に-3を掛けて JR (S) 16.5-3x> -19.5 すなわち -19.5<-3x≦16.5 ・・・・・ ③ 負の数を掛けると、不等 号の向きが変わる。 Joll ②③の各辺を加えて 20.5 19.5< 3x+2y-3x<21.5-16.5 不等号に注意 したがって 1 <2y<5 ****.. 3x-10 (*) (検討参照)。 各辺を2で割って 2 per ad

解決済み 回答数: 1
数学 高校生

黄色いマーカーを引いたところってどのように計算して答えを出しますか? 私が計算したら-1±√iが出ました。

基本 例題 61 高次方程式の解法 (2) 次の方程式を解け。 ①① 103 (1) x°+3x²+4x+4=0 (2)2x+5x3+5x2-2=0 p.101 基本事項 1 前ページと同様に,左辺を因数分解し、1次、2次の方程式に帰着させる。 公式利用,おき換えでは因数分解しにくいから,因数定理を利用する。 なお, (1) の左辺の係数はすべて正であるから, xに正の数を代入しても=0にはなら ない。よって, 負の数を代入してみる。 (1) P(x)=x3+3x2+4x +4 とすると 解答 P(-2)=(-2)+3(-2)'+4(-2)+4=0 (*) 組立除法 1 3 4 4-2 2 2章 11 1 高次方程式 よって,P(x) は x+2 を因数にもつ。 ゆえに P(x)=(x+2)(x2+x+2) (*) P(x)=0から x+2=0 または x2+x+2=0 x+2=0から x2+x+2=0から x=-2 - −1±√7i x= 2 したがって 1±√7i x=-2, 2 (2) P(x)=2x4 +5x3+5x2-2 とすると P(-1)=2(-1)*+5(-1)+5(−1)-2=0 よって,P(x) は x+1 を因数にもつ。 ゆえに -2-2-4 1 1 2 0 < x+2 を因数にもつこと に着目し, 割り算しない で P(x)=x3+2x2 +(x2+4x+4 ) =x2(x+2)+(x+2)2 =(x+2)(x2+x+2) と変形してもよい。 25 5 0 -2|-1 -2-3-2 2 P(x)=(x+1)(2x3+3x2+2x-2) また, Q(x)=2x3+3x2+2x-2 とすると (1/21)=(1/2)+3(1/2)+2.1/2- 2 3 2-2 0 +2・ -2=0 よって, Q(x)はx x-1/2 を因数にもつ。 12 20 3 2-2 224 ゆえに Q(x)=(x-212) (2x2+4x+4) Q(x)=(x-1)(2x+4x+4) =(2x-1)(x2+2x+2) (x+1)(2x-1)(x2+2x+2)=0 x+1=0 または 2x-1=0 よって ゆえに x+1=0から または x2+2x+2=0 x=-1 2x-1=0から x= x2+2x+2=0 から したがって x=-1±i 1 x=-1, -1±i 2 2 1 2 4

解決済み 回答数: 1