学年

教科

質問の種類

数学 高校生

3️⃣の問題なんですけどこれ定義域を動かして場合分けしないとダメなのは分かるのですが、何を基準に三つ場合分けしてるのかがわからなくて、、 教えて欲しいです!🙇🏻‍♀️🙏🏻

数学 値2a+3をとる。 よって, 2c+3=7 したがって, a=2 20+3. このとき 2a-1 y=(x+1) +3 となるので、最小値は3 -2-1 01 α-9をとる。 (4) y=x2-6x+a= (x-3)+α-9のグラフは 下の図のようになるので, x=3のとき、最小値 (ii) 2≦k<4のとき y x=kで最小値 (k-2)^ x=0で最大値 4 よって、 (k-2)+4=5 k-2=±1 0<k<2より, k=1 x=2で最小値 0 (2) 4 hug Ok24* 018- x=0で最大値 4 04 よって, a-9=-3 "00したがって, a=6 このとき、 よって, 和が4より不適 (k-2)2 0 2k4x a-5 34 y=(x-3)2-3 O 1 x (i) k≧4のとき となるので、 最大値は1 a18 a-9 x=2で最小値 0 (k-2)2 (5) y=x2-2(a-1)x +4のグラフがx軸と接す るとき, {-(a-1)2-1・4=0 a²-2a-3=0 (a+1) (a-3)=0 よって, a=-1,3 (日) x=kで最大値(-2)^ よって, (k-2)^=5 2=±√5 010 k≧4より,k=2+v5 0 2 4kx 80 0 640 (8) k=1, 2+√5 (i), (ii), (ii) より 3 4 (1) 関数①のグラフが点(-2, 16)を通っている 000<DA ので, 16=(-2)^−2a (-2)+6+5 よって, b=-4a+7 ①より, y=x2-2ax-4a+12 =(x-a)2-a²-4a +12 (1) y=x²-4ax+26 を変形すると y=(x-2a)2-40² +26 より、①の頂点は(2a, -4a2+26) また, ①がx軸と異なる2点で交わるから, -4a2+26<0 d ゆえに、頂点は点(a, -α-4a+12) で よって, b2a2etです。 ある。 (2)①が点(1 (2) ①が点 (11/16)を通るとき、 (2) 関数①のグラフがx軸と接するとき、頂点のy 座標は0より -a²-4a+12=0 (a+6) (a-2)=0 a>0より a=2 (3) ①より,y=(x-2)2 1 1 16 -4a. +26 4 よって,b=/1/20 [= このとき, 6<2a²より, 8=0 ADRIO a < 20¹³ 1 よってa</a② y=4とすると,(x-2)=4より x=0,4 4 (i) 0<<2のとき 17 日 最大値 x=k.y

未解決 回答数: 1
数学 高校生

150ではSnをSn+1と計算 144ではSnをSn-1と計算 させてるのはなぜですか?いつどっちにするとかあるんですか?

B 数列 150 S と an の関係式 (A) 数列{a}の初項から第n項までの和をSとするとき, Sn=2an-n (n=1, 2, 3, ...) が成り立っている. (1) α1 を求めよ . 解答 Sn=2an-n (1) ①でn=1 とすると, (2)一般項 an を求めよ.X (立教大) 29-5 2(0-1)-6-1) 20-2-1-1 Si=201-1 であり, S=a であるから, zan-n-1 a₁=2a1-1 (2)条件式より、 .. a₁=1 Sn+1=2an+1-(n+1), Sn=2an-n であり、両式の差を考えると, Sn+1-Sn=2an+1-2an-1 ①のnを一斉に n + 1 に変える Sn-Sn1 = α (n≧2) であるから, Sn+1-Sn=an+1 である an+1=2an+1-2a-1 an+1=2an+1 ②を変形すると, an+1+1=2(a+1) これは基本形の漸化式である 36₁ = 42 b1=az これより, 数列{an+1}は公比2の等比数列であり,初項は, a₁+1=1+1=2 である. よって an+1=2・2"-1=2" an=2"-1 an-11=2am-1 2=2x-11 anti-=2(0,-ス) 解說講義 Anπ = 2 (ant!) Goll ba bace 22 bm an と Sn が混ざっていては考えにくい.このような場合には, 144 で勉強した 「和と一般項 の関係」を用いて Sn を消去して,{a} についての関係式 (漸化式) を手に入れることを考え よう. 解答のように,①のn をn+1にした式を準備してその差を考えれば, Sn+1-Sn=an+1 によって,すぐに{a}についての関係式を手に入れることができる. 文 系 数学の必勝ポイント an と Sn の混ざった条件式 和と一般項の関係によってS" を追い出して, {az}についての関係式 を手に入れる (nを1つずらした式を用意して差を考えるとよい)

未解決 回答数: 1