学年

教科

質問の種類

数学 高校生

225. [2]で、f(x)は常に単調増加する、というのは 「x≧においてf(x)は常に単調増加する」ということですよね? y=x^3は極値は持たないけど単調増加でも単調減少でもないですよね??

t)(x-t) その 鹿児島大 演習 223 道 219 参照。 すると き, t = 0, [u [の] ~極大,他方で引 のとき ると 3 演習 例題225 不等式が常に成り立つ条件(微分利用) 0000 aは定数とする。 x≧0 において,常に不等式 x-3ax²+4a>0が成り立つよう にaの値の範囲を定めよ。 のとき 指針f(x)=x-3ax2+4aとして, 検討参照。 [1] 2a < 0 すなわちα<0のとき (神号同側) [x≧0 における f(x) の最小値] > 0 となる条件を求める。 導関数を求め,f'(x)=0 とすると x=0, 2a 02a の大小関係によって, f(x) の増減は異なる から 場合分けをして考える。 解答 f(x)=x-3ax2+4a とすると f'(x)=3x²-6ax=3x(x-2a) ......... f(x)=0 とすると x=0, 2a 求める条件は,次のことを満たすαの値の範囲である。 「x≧0 におけるf(x) の最小値が正である」 ・・・ (1) ①を満たすための条件は x≧0 におけるf(x) の増減表は右のよう になる。 ① を満たすための条件は したがって a>0 これはα<0に適さない。 [2] 2a=0 すなわち α = 0 のとき f'(x)=3x2≧0, f(x)は常に単調に増加する。 f(0) = 4a>0 4a>0 よって a>0 [ [3] 20 すなわちa>0のとき x≧0 におけるf(x) の増減 表は右のようになる。 ①を満たすための条件は -4a³+4a>0 これはα=0 に適さない。 20 f'(x) f(x) 4a -4a(a+1)(a-1)>0 a(a+1)(a-1) <0 a<-1,0<a<1 ゆえに よって これを解くと 0<a<1 a> 0 を満たすものは [1]~[3] から,求めるαの値の範囲は 2a<0 x 0 f'(x) + f(x) 4a > 2a 0 -4a³+4a 0<a< 1 1 /1 NJ 2a0x + 2a=0 242x-x 16 がx≧0 に対して常に成り立つ - -1 [注意] 左の解答では, [1] 2a<0, [2] 2a=0, [3] 2a>0 の3つの場合に 分けているが, [1] と[2] を まとめ, 2a≦0, 2a>0 の場 合に分けてもよい。 なぜなら, 2a≦0のとき, x≧0では f'(x)≧0 であるから, x≧0でf(x) は 単調に増加する。 ゆえに,x≧0 での最小値は f(0) =4a である。 実際に左 の解答 [1] と [2] を見てみ ると,同じことを考えている のがわかる。 + a (a+1)(a-1)の符号 0 基本220 < a>0のとき a(a+1)>0 0<2a 02ax ゆえに a-1 <0 としてもよい。 1 a 343 638 関連発展問題 6章

回答募集中 回答数: 0
数学 高校生

154. これらの問題3問は Oの位置についての記述がないですが、 Oはグラフを書いたとしたら原点に位置する場所のことを 示しているという前提の元で 写真のようにOPの大きさを求めていいのですか?

,b) 05-01 基本例題154 三角関数の合成 00000 | 次の式をrsin (0+α) の形に変形せよ。 ただし, r0 とする。 (1) √3 cos 0-sin si (2) sin 0-cos0 解答 (1) √√3 cos 0-sin0=-sin0+√√3 cos 0 P(-1, √3)とすると 指針> asin0+bcos A の変形の手順 (右の図を参照) ① 座標平面上に点P(a,b) をとる。 ② 長さ OP(=√²+62), なす角αを定める。 ③ 1つの式にまとめる。 asin0+bcos0=√a²+ b² sin(0+a) CHART asino+ b cos0の変形(合成) 点P(a,b) をとって考える よって OP=√(-1)2+(√3)=2 線分 OP がx軸の正の向きとなす角は √3 cose-sin0=-sin0+√3cos (2) P(1,-1) とすると って (3) P(2,3) とすると $154 OP=√12+(-1)2=√2 線分 OP がx軸の正の向きとなす角は =2sin(0+²) sin0-cos0=√2 sin 0- -√2 sin(0-7) 3 √13 OP=√22+32=√13 また,線分 OP がx軸の正の向きとなす角をαとすると 2 sina= √13 cos α = 2sin0+3cos0=√13sin(0+α) 3 √13 ただし, sinα= cos a= -π 2 √13 元 (3) 2 sin 0+3 cos 0 P(a, b) P √√31 p.242 基本事項 [1] -1 1 3 0 2 N √2 √3 √13 Aai 22 y4 次の式をrsin (0+α) の形に変形せよ。 ただし, r> 0, π<α とする。 (1) coso-√3sin O (3) 4sin0+7cos 0 (2) 1/12/0 1/12sinocost 0 AX x x a AR x αを具体的に表すことがで きない場合は,左のように 表す。 aar 243 4章 27 2 三角関数の合成

回答募集中 回答数: 0
数学 高校生

143. この問題のようにθの範囲が書いていない問題は 0≦θ<2πと考えればいいのですか?? 解答があまりどういうことなのかピンとこなかったので自分が学んだ方法で解こうとしたのですが、この方法(写真2枚目)でも解けますか? 解ける場合どう解くか教えてほしいです。

224 重要 例題 143 三角方程式の解の存在条件 10 の方程式 sin20+acos0-2a-1=0 を満たす0があるような定 ure 囲を求めよ。 指針▷ まず, 1種類の三角関数で表す (1-x2)+ax-2a-1=0 すなわち x2-ax+2a=0 ...... 解答 cos0=x とおくと, -1≦x≦1であり, 方程式は (1-x2)+ax-2a-1=0 すなわち x-ax+2a=0... ① この左辺をf(x) とすると, 求める条件は, 方程式f(x)=0が -1≦x≦1の範囲に少なくとも1つの解をもつことである。 これは, 放物線y=f(x)とx軸の共有点について,次の [1] ま たは [2] または [3] が成り立つことと同じである。 口 [1] 放物線 y=f(x) が-1<x<1の範囲で, x軸と異なる2 点で交わる, または接する。 よって、求める条件は、 2次方程式 ① が-1≦x≦1の範囲に少なくとも1つの解をもっ ことと同じである。 次の CHART に従って、考えてみよう。 2次方程式の解と数々の大小グラフ利用 D, 軸,f(k) に着目! 1 このための条件は、 ①の判別式をDとすると D≧0 D=(-α)²-4・2a=α(a-8) であるから a(a-8) ≥0 (2 よって a≦0,8≦a a 軸x=1/28 について-1<<1から 2<a<2 ...... a>. IKACION cos0=xとおくと, -1≦x≦1 で, 与式は f(-1)=1+3a > 0 から f(1)=1+a>0 から ②~⑤の共通範囲を求めて <a≦0 ① [2] 放物線 y=f(x) が-1<x<1の範囲で,x軸とただ1点 ---- で交わり,他の1点は x<-1, 1<xの範囲にある。 このための条件は f(-1)ƒ(1) <0 1 3 a>-1 1 3 a=- (4) (5) ゆえに (3a+1)(a+1)<0よって-1<a<- a<- 1/13 1 またはa=-1 ① [3] 放物線 y=f(x)がx軸と x = -1 または x=1で交わる。 f(-1) = 0 またはf( 1 ) = 0 から [1], [2], [3] を合わせて -1≤a≤0 [参考] [2] と [3] をまとめて,f(-1)(1)≧0としてもよい。 3 [同志社大] ③3③ 練習 0 の方程式 2cos²0+2ksin0+k-5=0を満な ④143 を求め 検討〉 TAHO x2ax+2a=0 をαについ て整理すると x2=a(x-2) よって, 放物線 y=x2 と 直線 y=a(x-2)の共有点のx座 標が-1≦x≦1の範囲にあ る条件を考えてもよい。 解 編 p.139 を参照。 [1] \ YA + 11 D2 (794) [2] YA -1 Do 基本140 -1 YA -1 1 00 + X 大量 <D-[0] X

回答募集中 回答数: 0
数学 高校生

24. [2] なぜa=b=cならば abc≠0を満たすすべての実数a,b,cについて成り立つ と言えるのですか? また、a≠0,b≠0,c≠0でなければならないのを まとめてabc≠0と表しているのですか?

44 基本例題 24 比例式と式の値 (1) x+y_y+z_z+x (0) のとき, 6 (2) 解答 (1) 5 b+c a x+y 5 よって = a 練習 3 24 指針 条件の式は比例式であるから, 比例式は=kとおくの方針で進める。 A (1) = とおくと x+y=5k, y+z=6k,z+x=7k これらの左辺は x,y,z が循環した形の式であるから、Aの辺々を加えてみる>まず、結 (1) a, E すると, x+y+z を k で表すことができる。 右下の 検討 参照。 (2) も同様。 - c+a b y+z 6 (2) 分母は0でないから b+c a+b C (1) x+y=5k ① +② +③ から 2(x+y+z)=18k したがって x+y+z=9k ④-②, ④-③, ④-① から, それぞれ d) A x=3k, y=2k, z=4k c+a b a+b C z+x 7 ①,y+z=6k xy+yz+zx 6k²+8k² +12k² ) x2+y2+22 6 (2)__a+1 -=kとおくと, k=0で a のとき、この式の値を求めよ。 b+c=ak ① +② + ③ から 2(a+b+c)=(a+b+c)k よって (a+b+c) (k-2)=0 a+b+c=0 または k=2 ゆえに [1] a+b+c=0のとき b+c=-a よって k= (3k)²+(2k)²+(4k)² 26k2 26 29k2 29 abc≠0 b+c_a =kとおくと ①,c+a=bk ・②a+b=ck a xy+yz+zx x2+y2+22 ②,z+x=7k ...... db=2,sld =-1 x+y=y+z_z+x 7 b+1 [2] k=2のとき, ①-② から a=6* ②-③ から b=c よって, a=b=cが得られ, これは abc≠0 を満たすすべ ての実数a,b,c について成り立つ。 [1], [2] から,求める式の値は 8 -1, 2 a+b+d (0) m2. の値を求めよ。 AFFE DE 7th- bo-do x²-1² 要例題 C abc=1, であること a+b+c 検討 ①~③の左辺は, x, 循環形 ( x y zxd 次の式が得られる)に いる。 循環形の式は、 加えたり, 引いたり 処理しやすくなること ART <x:y:z=3:2:41 答 3・2+2.4+4・3 32 +22+42 と計算することもで (2) a, abc≠0⇔a=0 かつ 60 かつ よって, ること P=(a- bc=1と 0の可能性があるから 両辺をa+b+cで割 はいけない。 (*)k=2のとき, ①, よって a=b (分母) 0の確認。 って したがって _Q=(a- b+c=2actoに P ここで,( a² +6² F この2式の辺々を引よって b-a=2(a−b) したがっ 5 5 a

回答募集中 回答数: 0