学年

教科

質問の種類

数学 高校生

⑵が意味わかんないです。

in (a+B), の値を求めよ、 p.241 =1 を利用して cos a cos B 角α. B 象限に注意。 sin² ar + costs sin²β+cosp= 12_16 13 65 1233 13 22 23 sin(a-8) を求め, sin(a-B) cos(a-B) 計算してもよい ing+coslo= n²+cos を求めよ 4 EX93(1 152 2直線のなす角 (1) 2直線3x-2y+2=0, 3√3x+y-1=0のなす鋭角を求めよ。 基本例 指針 ・例題 (2) 直線y=2x-1 と の角をなす直線の傾きを求めよ。 解答 2直線のなす角 まず, 各直線とx軸のなす角に注目 直線y=mx+nとx軸の正の向きとのなす角を0とすると m=tane (050<n, 077 ) π (1) 2直線の方程式を変形すると √3 y= 2x+1, y=-3√3x+1 図のように、 2直線とx軸の正 2 の向きとのなす角を,それぞれ α, β とすると, 求める鋭角は 0=β-a SIGN √3 2 (1) 2直線とx軸の正の向きとのなす角をα,βとすると, 2直線のなす鋭角は,α<βならβ-α または π-β-α) で表される。 ←図から判断。 この問題では, tane, tan β の値から具体的な角が得られないので, tan ( β-α) の計 算に加法定理を利用する。 an 6 tanc= tan 0=tan(8-a)= tan(a+4)= 0<0</ であるから 0= (2) 直線y=2x-1とx軸の正の向 きとのなす角をαとすると tanq=2 tan ±tan π y=-3√3x+1 -3√3で tan β-tana 1+tan βtana =(-3/3)={(1+(3/3)・丹 π 1 tan a tan- Sa √√3 y=- 1 0 O y=2x 2±1 (複号同順) 1+2・1 であるから 求める直線の傾きは -3, 3 B x /y=2x-1 m X p.241 基本事項 2 ys n to 0 y=mx+n | 単に2直線のなす角を求め るだけであれば, p.241 基 本事項 2 の公式利用が早 い。 1+ 傾きが mi, m2 の2直線 のなす鋭角を0とすると tan 0= x 2 別解 | 2直線は垂直でないから tan 8 m-m2 1+m1m2 √3-(-3√3) 2 -7/3+1/3-√3 ÷ 2 <<から 245 2直線のなす角は,それ ぞれと平行で原点を通る 2直線のなす角に等しい。 そこで、 直線y=2x1 を平行移動した直線 y=2x をもとにした図を かくと, 見通しがよくな る。 練習 (1) 2直線x+3y-6=0, x-2y+2=0 のなす鋭角を求めよ。 2 152 (2)直線y=-x+1との角をなし, 点 (1,√3) を通る直線の方程式を求めよ。 4 章 24 加法定理

回答募集中 回答数: 0
数学 高校生

239.1 解答の別解の方で解いたのですが、 解答でいう「①と③が一致するとき」という文言を 「①、②はxにおいて次数の等しい項の係数は等しいので」 と書いたのですが問題ないですか??

点 重要 例題239 2つの放物線とその共通接線の間の面積 2つの放物線C1:y=x2, C2:y=x2 - 8x +8 を考える。 (1) CとC2の両方に接する直線l の方程式を求めよ。 (2) 2つの放物線 C1, C2 と直線lで囲まれた図形の面積Sを求めよ。 xx-α) 二下関係は -4x+3 3x-33 指針 (1) 「Cに接する直線がC2 にも接する」と考える。まず, C 上の点(p,p2) における接線の方程式を求め,この直線が C2 に接する条件を,接線⇔重解を利用して求める。 (2) 面積を求めるときの定積分の計算には,前ページ同様 [(x—a)²dx= (x_a)³ -+C (C は積分定数) を使うとらく。 3 (1) 755 における接線の方程式は,y'=2xから 上の点(p,p2) y-p²=2p(x-p) b5 y=2px-p². ① この直線がC2 にも接するための条件は、 2次方程式 2px-p2=x2-8x+8 ゆえに xh (2) x=-1+4=3 Ci, C2 との接点のx座標は,それぞれ 7:01:49 2009 すなわち x-2(p+4)x+p2+8=0 が重解をもつことであり、②の判別式をDとするとD=0 WURD ここで D={-(p+4)}²-1• (p²+8)=8(p+1) p=-1 よって 8(p+1)=0 ① から、直線ℓ の方程式は y=-2x-1 (2)=1のとき2次方程式②の解は ...... =S_,(x+1)'dx+∫(x-3)"dx -3)³ 8 8 [(x + ¹)²] + [(x - 3²1 - 3 + 3 = 16 3 3 3 x=-1.3 C1とC2の交点のx座標は,x2=x2-8x+8から したがって求める面積は S=S_{x-(-2x-1)}dx+∫{x28x+8-(-2x-1)}dx x=1 \C₁ 1x=- 基本 236~238 2 別解 (1) C2上の点 (g, g2-8g+8) における 接線の方程式は y-(g²-8g+8)=(2g-8)(x-g) すなわち y=2(g-4)x-q2+8 ….. ③ ①と③が一致するとき 2p=2(q-4), -p²=-q²+8 これを解いて -1 000 p=-1, g=3 よって、直線l の方程式は y=-2x-1 -2(p+4) 2・1 AVCi 1 l から。 3 3 71 4 面 積

未解決 回答数: 1
数学 高校生

この問題をlogを使わずに解くことはできませんか? もしできるなら、その手順を教えてください

470 重要 例題 38 am = pa型の漸化式 a=1, an+1=2√an で定められる数列{an}の一般項を求めよ。 指針 に がついている形, a㎡²2 や an+] など 累乗の形を含む漸化式 解法の手順は ①1 漸化式の両辺の対数をとる。 am の係数りに注目して、底がりの対数を考える。 -log.MV=log..M+log.N logpasti = logsp+logpan" ←log A=klog.M すなわち logpan+1=1+qlogpan [2] logpam=ba とおくと 0m+1=1+gbm but=b.+▲ の形の漸化式 (p.464 基本例題 34のタイプ)に帰着。 対数をとるときは, (真数) > 0 すなわち a>0であることを必ず確認しておく。 CHART 漸化式 α+1 = pa" 両辺の対数をと よって, an+1=2√an の両辺の2を底とする対数をとると log2an+1=loga 2√an log2an+1=1+ ゆえに α=1>0で, an+1=2√an(>0) であるから, すべての自に注意 解答然数nに対して an>0である。 -log₂ an 2 bat1-1+1/230円 bn+1-2=1/12 (6-2) 10gzam=bm とおくと 00000 これを変形して ここで bı-2=10g21-2=-2 よって,数列{bm-2} は初項-2,公比 の等比数列で An-1 bn-2=-2 =-2(12) すなわち bm=2-23- したがって, log2an =2-22 から an=22-2 antipa 厳密には、数学的 で証明できる。 ◄loga(2-a) 練習 α1=1, an+1=20m² で定められる数列{an}の一般項を求めよ。 ③ 38 = log22+=logia, ◆特性方程式 a = 1+120 を解くと α=2 =2¹-" logaan=pand" anan+1 を含む漸化式の解法 検討 anan+1のような積の形で表された漸化式にも両辺の対数をとる が有効である。 例えば, logcanan+1=10gcan+logcan+1となり, logcan と 10gean+1の関係式を導くことが できる。 [類 慶応大] p.496 EX21 a

回答募集中 回答数: 0