学年

教科

質問の種類

数学 高校生

高校数学対数です。(2)の解答で、なぜ不等式は〜のところでlogをとって真数だけの不等式にしないのですか?また、(3)は全然分かりません。解説お願いします!

解答 61 W 基本例 (1) logo.3(2-x)≧logo.3(x+14) 00000 295 例題 184 対数不等式の解法 次の不等式を解け。 (2) log2(x-2)<1+log/(x-4) (2)神戸薬大, (3) 福島大] 基本 182 183 重要 185、 (3)(10gzx-10g24x>0 指針 対数に変数を含む不等式 (対数不等式) も, 方程式と同じ方針で進める。 まず,真数>0 と,(底に文字があれば)底>0,底≠1の条件を確認し,変形して 10gaA<10gaBなどの形を導く。 しかし、その後は a>1のとき logaA <loga B⇔A<B 大小一致 0<a<1のとき logaA <logaB⇔A>B 大小反対 のように、底αと1の大小によって、不等号の向きが変わることに要注意。 (3)10gzxについての2次不等式とみて解く。 (1)真数は正であるから, 2-x>0 かつ3x+14>0より 14 <x<2 3 ① 底 0.3は1より小さいから, 不等式より 2-x≦3x+140<a<1のとき よって x-3 ② fools+ ①,②の共通範囲を求めて -3≦x<2 (2) 真数は正であるから, x-2>0かつx-4>0より> x>4 1=log22, log/(x-4)=-log2(x-4) であるから, 不等式は log2(x-2)<10g22-10gz(x-4) ゆえに log2(x-2)+10g2(x-4)<10gz2 よって log2(x-2)(x-4)<log22 底2は1より大きいから (x-2)(x-4)<2 loga A≤loga B ⇔A≧B (不等号の向きが変わる。) 2 これから x-2<- x-4 が得られるが, 煩雑にな るので,xを含む項を左 1辺に移する。 5 5章 3対数関数 ゆえに x2-6x+6<0 よって3-√3<x<3+√3 x-6x+6=0 を解くと x>4との共通範囲を求めて (3) 真数は正であるから 4<x<3+√3 x>0 ① log24x=2+10gzxであるから,不等式は x=3±√3 また√3+3>1+3=4 (log2x)-log2x-2>0 ゆえに (logzx+1)(10gzx-2)>0 よって logzx <-1,2<logzx したがって logax<loga, log24<log2x 底2は1より大きいことと,①から0<x<12/24<x 10g2x=t とおくと t2-t-2>0 よって (t+1)(t-2)>0 練習 次の不等式を解け。 ②184 (3-x)≤0 (2) logs(x-1)+logs (x+2)≦2 p.301 EX 117

回答募集中 回答数: 0
数学 高校生

ィの解説の(iii)でなんで-の方も成り立つのですか?

163 直方体 右図のような直方体 OADB-CEFG において OA=a, OB=6,DC=c とおく. \G F P ||=1,|6|=2, ||=3 とし, 2点E, Gを通る C 直線を とする. E (1) OE, OG を で表せ (2)Pを1上の点とする. このとき, OPは実数 tを用いて, OP =OE+tEG と表せる。 (ア) OP⊥EGとなるtの値を求めよ. (イ)△OEP が二等辺三角形となるときの 値をすべて求めよ. 3 B O 2 b a 1 A AA D ()() (2) (ア) OP, EG (=OG-OE) を a, L, で表し,|a|=1,||=2, 精講 ||=3, a1=c=cd=0 を用いて計算すれば, tの方程式が でてきます. これを解けば答えはでてきます. (イ) 二等辺三角形という条件は要注意です. それはどの2辺が等しいかによっ て,3つの場合が考えられるからです。 注 →3つの場合でしらべる 三辺の距離を求める (イ)|OE|=12+32=10 |OP|=|(1-t)a+t+c (1) 画 =(1−t)|a²+b²+1c1² (a+b=b.c=c.a=0) J30=12-21+1+4t²+9=5t²-2t+10 |EP|=|tEG|2=5t2 ← (i) OE OP のとき, OEPOP より,エース 253 10=5t2-2t+10 t(5t-2)=0.. t = // (t=0は不適 (OPEP のとき,|OP|=|EP|より 5t2-2t+10=5t2 2t+10=0 :.t=5 POE のとき,|EP|=|OÉRより,平日 5t2=10 t2=2. t=±√2 (1)〜() より t=±√2, 5' (2) 直方体では, 座標も有効な手段です. すなわち, A (1, 0, 0), B(0, 2, 0), C(0, 0, 3) とおくと, EG=AB だから OP= (1,0,3)+t(-1,2,0)=(-t+1, 2t3) と表せ, P(-t+1, 2t, 3), E (1, 0, 3) と座標で表して, OP2, EP2, OE' を計 算します。 解答 (1) OE=OA+OC=d+c OG=OB+OC=6+ (2) (ア)OP=OE+tEGOE+(OG-OE) =a+c+t(-a) =(1−t)a+to+c OPEG = 0 だから {(1-t)a+to+c)(-a)=0 . (t−1)|at|62=0 ||=1,||=2より t-1+4t=0 5 ( à·b=b.c=c·à=0) ポイント単に「二等辺三角形」「直角三角形」 とあったら, 場合 が3種類あることに注意 演習問題 163 右図の直方体において, AG = (5, 5, -3), H G AC=(3,1,2), BH=(3,1,-7) が成りた っている. (1) AB, AD, AE を成分で表せ. (2)直線AH 上に, △ABP が二等辺三角形 A となるように点Pをとる. (ア) <BAH= を示せ. (イ) A=tA となる実数tの値を求めよ. Di F 第8章

未解決 回答数: 1