学年

教科

質問の種類

数学 高校生

【数I】 255番の(1)の問題で、Sx=√32をどうやって5.6565...になるのか分かりません、 (矢印で?が付いているところです) 教えて頂きたいです🙇‍♀️

教p.178 問1 253 次の表は、5人の国語のテストの得点である。 それぞれの得点の偏差を求めよ。 (1) AD BC A D E C B 得点 75 79 86 77 83 5人の得点の平均値は -A se 5 -(75+79+86+77+83) = = 80 (点) となり、得点の偏差は次の表のようになる。 = A B C D E 得点 75 79 86 77 83 偏差 -5 -1 6 -3 3 教p.180 問2 DECORA 254 253 において、5人の国語のテストの得点の分 散 s2, 標準偏差s を求めよ。 MARJ }-{(−5)² + (−1)² +6² + (−3)² +3²} 5 したがって CHIAFLON x 400 × 80 = 16 s=√16=4 (点) 教p.180 #問3/ EVS = DA==ÃO 255 次の表は,生徒A,B2人の5回の理科のテ ストの得点である。 FEA 1 2 3 4 5 Aの得点 68 64 52 56 60 Bの得点 62 64 60 56 58 (1) Aの得点の分散 Sx2, 標準偏差 sx を求めよ。 ただし, Sx は小数第3位を四捨五入して求め よ。 なお, 電卓などを用いてもよい。 248 Aの5回の得点の平均値は 011 5 60 (点) となり, Aの得点の偏差は, 次の表のようになる。 回 1 2 3 4 5 Aの得点 68 64 52 56 60 Aの偏差 8 4 -8-4 0 05 Sx (68+64 +52 +56+60) したがって 1 - {8² +4² + (−8)² + (−4)² +0²} T&S 5 1 5 ×160=32 ‚S\= 8A ACAOFRO Sx=√32=5.656・・・≒5.66 (点) JA (0) (2) Bの得点の分散 sy2, 標準偏差 sy を求めよ。 ただし, sy は小数第3位を四捨五入して求め よ。 なお, 電卓などを用いてもよい。 Bの5回の得点の平均値は+8 1 ( 62 + 64 + 60 +56 +58) 5 11/13 5 = 60 (点) となり, Bの得点の偏差は, 次の表のようになる。 1 2 Bの得点 62 64 x 300 したがって 60 Bの偏差 2 4 0 3600 "a81 X 40 = 8 × 300 2 sy² = — - {2²- {2² +4² + 0² + (-4)² + (−2)²} Sy 4 5 56 58nia (S) -4-2 AA 平均館× う人の記録の (14+ Sy=√8=2.828・・・≒ 2.83 (点) 記録 (3) Aの得点とBの得点の散らばりの大きさを比 較して, 分かることを説明せよ。 分散,標準偏差は、ともにAのほうがBよりも 大きいから, Aのほうが得点の散らばりが大きい と考えられる。 の2

解決済み 回答数: 2
数学 高校生

写真の質問に答えてください!

確率変数の期待値,分散,標準偏差 発展例題 12400 基礎 例題 105 から6までの番号をつけてある6枚のカードがある。 この中から2枚のカ コードを同時に引くとき, 引いたカードの番号の大きい方をXとする。 この とき、次のものを求めよ。 (1) Xの期待値 CHARI & GUIDE 確率変数 X の期待値,分散,標準偏差 E(X)=2xp. V(X)=E(X²)—{E(X)}², 0(X)=√V(X) まず、Xのとりうる値を求める。 X=1 はあり得ないから、Xの確率分布(X=2, 3. 4,5,6) を求める。なお, 番号 Xは整数であるが, 期待値や分散は整数になるとは 限らない。 1 E(X)=2+3+4+ 15 解答 6枚のカードから2枚を引く方法は全部で C2 = 15 (通り) (1)X=k(kは整数で2≦k≦6) のとき, 1枚は番号がんのカー ドで残りは (k-1) 枚 から1枚選ぶから Xの 確率分布は右の表のよう になる。 よって, Xの期待値は 15 (2) (1) から Xの分散は V(X)=E(X)-(E(X))^ -70 196 14 9 3 9 (3) (2) から Xの標準偏差は a(X)=√V(X)=₁ (2) Xの分散 EX 105 V 9 X P - √14 3 2 3 1 15 456 15 2 (3) Xの標準偏差 4315 +6· 5 6 計 15 15 15 15 || - (2²-½ + 3³²- ²/5 + 4²² ³35 +5² +53 +6²-)-(¹) 2 +3².. 4 15 15 15 15 4 5 5 70 14 15 15 3 1 (2) V(X)=E((X-m)) で求めると、次のように 計算が大変になる。 v(x)=(2-1)³.5 +(3-14). /1/2 COLT +(5-1) ²1/1 · (64+50+12 135 +4+80) 210 14 =1/4 135 率定数aX+bの期待値, 分散 例 106 例題 X を確率変数, a, bを定数とする。 Xの分散 V (X) と αX + b の分散 ▲発展例題 123① (X+6) においてV(aX+b)=²V (X) が成り立つことを証明せよ。 (②) 赤玉3個と白玉2個の入った袋から, 3個の玉を同時に取り出すとき, 3 のうちの赤玉の個数をXとする。 このとき, 確率変数 2X +3 の期待値 と分散を求めよ。 2個のさいころを同時に投げるとき 出た目の小さい方をXとする。 こ the CHART 確率変数aX+bの期待値,分散 E(aX+b)=aE(X)+b, V(aX+b)=a²V(X) (1) E(X)=m とすると 分散の定義F(X)=E((X-m)") を利用。 (2) まず, Xの確率分布を求め, E(X) と V(X)を計算する。 GUIDE E(X)=mとすると E(ax+b)=aE(X)+b=am+b よって V(ax+b)=E({(ax+b)(am+b)}}) = E((aX-am)²)=E(a²(X-m)²¹) =a²E((X-m)²) =a²V(X) E(aX+b)=am+b Xのとりうる値は 1 2 3 である。 CX2C23 P(X=1)= = 5C3 10 3C3 1 5C3 10 P(X=2)=3C2X2C1 6 P(X=3)= よって,Xの確率分布は右の表の ようになる。 ELX)=1+30 +2.00 +3-10-18 - 23/0 6 9 +3・ 10 5 X 1 2 3 計 3 6 1 P 10 10 10 ゆえに 一致しないけど、(2x+3)=2F(X)+5=2 5 どこが間違ってますかそx)=4. 9 25 SC3 9 18 v(x)= (1²• 10 V(X)-(1³.36 +2³.5+3². 1)-(2)²-½-( ? ) - ² 6 10 36 25 1 33 -V(X)=E((X-m (変数)(確率 7 v(x)=E√(x-m³²² aE 本当にそうなるか知りたい から105の問題の数を 代入したら. -V(X)=E(X¹3(EX) 4章 x=3のとき V(3)-143-447 488 orq 20 14(2714) 44.43 -V(2XV +3" とるな 確率変数の期待値と分散

未解決 回答数: 0