学年

教科

質問の種類

数学 高校生

(2)解説見てもいまいちわからないのですがどなたか教えて欲しいです 重要例題の方です!

重要 例題 71 定義域によって式が異なる関数 00000 関数f(x) (0≦x≦4) を右のように定義すると 2x (0≦x<2) き、次の関数のグラフをかけ f(x)= (1) y=f(x) (2) y=f(f(x)) |8-2x (2≦x≦4) けに利用す 分け ・分け。 √2 -101 指針 定義域によって式が変わる関数では,変わる境目のx,yの値に着目。 (2) f(f(x)) f(x)のxに f(x) を代入した式で f(x) <2のとき 2f(x), 2≦f(x) 4のとき 8-2f(x) (1) のグラフにおいて, 0≦f(x) <2となるxの範囲と, 2≦f(x) 4となるxの範囲 を見極めて場合分けをする。 (1) グラフは図 (1) のようになる。 答 (2)f(f(x)) = {g2(x)=f(x)≦4) (0≦f(x)<2) よって, (1) のグラフから 123 3章 ⑧ 関数とグラフとの 変域ごとにグラフをかく。 (1) のグラフから, f(x) D 0≦x<1のとき f(x)<2 1≦x≦3のとき 2≤f(x)≤4 3<x≦4のとき 0≤f(x)<2 また, 1≦x≦3のとき, 平 f(x)の 1≦x<2なら f(x) =2x 2≦x≦3なら f(x)=8-2x のように,2を境にして 式が異なるため, (2) は左 の解答のような合計4 通 りの場合分けが必要に なってくる。 0≦x<1のとき 1≦x<2のとき f(f(x))=2f(x)=2.2x4x f(f(x))=8-2f(x)=8-2・2x =8-4x 1 (p+d g+o 2≦x≦3のとき f(f(x))=8-2f(x)=8-2(8-2x) =4x-8 3<x≦4のとき f(f(x))=2f(x)=28-2x) =16-4x よって, グラフは図 (2) のようになる。 (1) (2) ya YA 4 A x R 1234 x 参考 (2) のグラフは、式の意味を考える方法でかくこともできる。 [1]f(x) が2未満なら2倍する。 [2]f(x) が2以上4以下なら, 8から2倍を引く。 [右の図で、黒の太線 細線部分が y=f(x), 赤の実線部分が y=f(f(x)) のグラフである。] なお, f(f(x)) f(x) f(x) の 合成関数といい, (fof) (x) と書く (詳しくは数学Ⅲで学ぶ)。 8から2倍を 引く 4--- 0 4 x 2倍する 練習 関数 f(x) (0≦x<1) を右のように定義するとき, 71 次の関数のグラフをかけ。 2x (0≦x</ f(x)= (1) y=f(x) (2)y=f(f(x)) 2x-1 1 (1/2x-1)

回答募集中 回答数: 0
数学 高校生

こちらの(2)が理解できないので、詳しく教えていただきたいです!

114 き、次の関数のグラフをかけ。 関数f(x) (0≦x≦4) を右のように定義すると 重要 例題 68 定義域によって式が異なる関数 (2) 00000 f(x)= =(2x-2x (25x50) (0≦x<2) (1) y=f(x) (2)y=f(f(x)) 指針 定義域によって式が変わる関数では,変わる境目のx,yの値に着目。 (2)f(f(x)) f(x)のxに f(x) を代入した式で, 解答 0≦f(x) <2のとき 2f(x), 2f(x)4のとき ! 8-2f(x) (1)のグラフにおいて, 0≦f(x)<2となるxの範囲と, 2≦f(x)≦4となるxの範囲を見 極めて場合分けをする (1) グラフは図 (1)。 (2)f(f(x))={2}(x) (2≧f(x)≦4) (0≤f(x)<2) よって, (1) のグラフから 0≦x<1のとき f(f(x))=2f(x)=2.2x=4x 1≦x<2のとき f(f(x))=8-2f(x)=8-2・2x=8-4x 2≦x≦3のとき f(f(x))=8-2f(x)=8-2(8-2x)=4x-8 3<x≦4のとき f(f(x)) =2f(x)=2(8-2x)=16-4x よって, グラフは図 (2)。 (1) YA 4 T J VA 4 O 1 2 3 4 x 0 1 2 3 4 x ■変域ごとにグラフをかく。 (1)のグラフから,f(x)の 変域は 0≦x<1のとき 0f(x)<2 1≦x≦3のとき 2≤f(x)≤4 3<x≦4のとき 0≤f(x)<2 また, 1≦x≦3のとき, f(x) の式は 基本 ① 2次 1≦x<2なら f(x)=2x 2≦x≦なら f(x)=8-2x のように, 2を境にして式 が異なるため (2) は左の解 答のような合計4通りの場 合分けが必要になってくる。 2 3 x ま 2 参考 (2) のグラフは、式の意味を考える方法でかくこともできる。 [1]f(x) が2未満なら2倍する。 YA 8から2倍を ASS 引く 4 [2]f(x) が2以上4以下なら, 8から2倍を引く。 [右図で, 黒の太細線部分が y=f(x), 赤の実線部分が 2 y=f(f(x)) のグラフである。] なお, f(f(x)) f(x) f(x) の 合成関数といい, (fof) (x) と書く (詳しくは数学Ⅲで学ぶ )。 0 X 2倍する

回答募集中 回答数: 0
数学 高校生

赤丸の部分がどういう意味なのか教えていただきたいです🙇🙇 よろしくお願いします!

例題 342 標本平均の平均・ 標準偏差 ★☆☆☆ (1) ある高校の男子の体重の平均は 62kg,標準偏差は9kgである。この 高校の男子100人を無作為に選ぶとき,この100人の体重の平均 X の平 均と標準偏差を求めよ。 (2) ある母集団から復元抽出された大きさ3の標本の変量が X1,X2, X3 であるとき、標本平均 X の平均と標準偏差 X1 を求めよ。 ただし, X」 の確率分布は,右の表 P -1 0 1 211 |1|2 14 16 002 E(X) の通りとする。 N 公式の利用 母集団 母平均80 母標準偏差 無作為 抽出 標本 Of ... 標本平均 X 「標本平均の平均E(X) [標本平均の標準偏差。(X) X1+X2+…+ Xn 思考プロセス |個 n Action» 標本平均の平均は、 母平均と同じであることを用いよ 解 (1) 母平均m=62, 母標準偏差 o = 9, 標本の大きさ = m 0 = n=100 より 平 9 募集(X) =m=62, o(X) = = (2) 母平均の片側と! (2) 母平均m,母標準偏差は √100 m =(X)=(-1)/1/+0.1/12+ +1. +2・ 2 910 1 12 = (0.1) E(X^2)=(-1)/1/+0°.1/+12/1/2+241/12=1 6 o=o(X)=√√E(X2)-{E(X)} == よって E(X)=m= 2 o(X) 0 √3 = 13 2 2 練習 342 (1) ある高校の女子の 2 = 1 12 /3 2 標本の大きさ、母標準 偏差のとき、標本平均 X の標準偏差は (x)=1/1 標本の変量を X1,X2,・・・, Xn とすると E(X1) = E(X2)=・・・ =E(Xn) =m | (X)=6(X2)= = o(Xn)=0 V(X)=E(X2)-{E(X) 標本の大きさ n=3

回答募集中 回答数: 0