学年

教科

質問の種類

数学 高校生

0<=t<=1とはどういうことですか、教えてください。

例題 131 三角 00180°において、方程式 2cos°0-5sin0 +1=0を満たす0の他 Joies 100 を求めよ。 思考プロセス 変数を減らす 一方を消去 sin と cose sin0 (または cos0 ) だけの方程式 既知の問題に帰着 int とおく で tの方程式 を含む方程式 /sin'0+cos'0=1 置き換えたもの 値の範囲に注意 の利用 Action 三角比の2乗を含む式は、1つの三角比で表せ を利用せよ RoAction 文字を置き換えたときは、その文字のとり得る値の範囲を考えよ 例題76 扇 cos20=1-sin0 であるから,与式は19歳与えられた方程式の1次 2 (1-sin20)-5sin0+1 = 0 2sin0+5sin0-3 = 0 の項が sind であるから、 sin0 だけの式にする。 ... 1 ここで,sin0 = t とおくと,0°≧≦180°より心agoioad 0 ≤1 ≤1 方程式 ① は 2t2+5t-3=0 (t+3)(2t-1)= 0 1 よって t = -3, 2 置き換えた文字のとり 得る値の範囲に注意する。 Onia d 3 → 6 1 0≦t1であるから t= 1-2 031 01 YA sin0 = -3 を満たす角 1 130 すなわち sin - 1 12 2 ( は存在しない。 2 P したがって, 求める 0 は 0 = 30°,150° 単位円上で座標が 1/2 1 x となる点は,図の2点P, P'である。 05 Point... sin0, cost の2乗を含む方程式の解法の手順 ①sin°0 + cos 0 = 1 を用いて sind (または cose) だけの方程式をつくる。 (2) sint (または coset) とおいて, tの2次方程式をつくる ③置き換えた文字のとり得る値の範囲を求める (4 0° 0≦sin≦1 より 180°のとき, (または1 ≦ cosd ≦1 より - ③の範囲に注意して②のもの方程式を解く。 単位円を用いて,の値を求める 0 st≤1 TO

未解決 回答数: 0
数学 高校生

2枚目の四角の部分はどうやって数字を求められましたか?

B2 三角関数(20点) OはTOMを満たすとする。xについての2次方程式 2x2-2 (sin0+cos0)x+sin200 ...... ① を考える。 (1)のとき、 2次方程式 ① を解け。 (2) 2次方程式①の解について, 太郎さんと花子さんが話している。 太郎: 2次方程式 ① の解はどうなるのかな? 花子: 2倍角の公式より, sin20= だから、①の左辺を因数分解して解を求め ることができるね。①の2つの解をα,β(a<B) とすると,0ぇだから (+) ( a = (イ) B = (ウ) となるね。 太郎が変化するとき、2つの解の差 B-αの値はどうなるのかな。 完答へ 道のり (2) (i) 2 花子: t=β-α とおくと, t= (エ) sin (0- sin(0- (オ) と変形できるね。 (ii) この式を用いると、のとき,tのとり得る値の範囲は (カ) とわか るよ。 (i) (ア) ~ (ウ) に当てはまるものを、次の1~7のうちから一つずつ選び、番号 で答えよ。 ただし、 同じものを繰り返し選んでもよい。 1 sin 22sin0 3 cos 4 2 cos 0 5 sincos0 62sincose 7 cos-sin 20 (ii) (エ) に当てはまる数を答えよ。 また, (オ) に当てはまるものを、次の1~7 ( のうちから一つ選び、 番号で答えよ。 π 1 2 π 3 TC 4 π 2 6 3 6 4TT 7 ST 6' (カ) に当てはまるもの値の範囲を答えよ。 ただし、解答欄には答えのみ記入せよ。 配点 (1) 6点 (2)3点(イ) 1点 (ウ) 1点 (エ)(オ) 3点 (完解) (カ) 6点 解答 (1) 2x2-2 (sin+cos 0)x+ sin 20 = 0 =1のとき、①は 2x2-5 2-2(sin+cos)x+ sin x = 0 42- sino=1. cos=0, sin 完 道の

未解決 回答数: 1
数学 高校生

キ=n-2、ク=n-1になる理由が分かりません。 教えてください🙏

F22/5/5. 数学Ⅱ・数学B 第3問~第5問は,いずれか2問を選択し, 解答しなさい。 第4問 (選択問題) (配点 20) 花子さんは,毎年の初めに預金口座に一定額の入金をすることにした。この入金 を始める前における花子さんの預金は10万円である。ここで,預金とは預金口座 にあるお金の額のことである。 預金には年利1%で利息がつき, ある年の初めの 預金が万円であれば,その年の終わりには預金は1.01万円となる。 次の年の 初めには1.01万円に入金額を加えたものが預金となる。500 毎年の初めの入金額を万円と年目の初めの預金を4万円とおく。 ただ L. p>0 EL, n 3.0 v2z00 180.0 750,0 8230.000.0 20.0 40.0 zep 01580.000 TO 0 例えば, a1= 10+p, a2 = 1.01(10) + p) +pである。 10 10.0 00.0 001RIS.0 18.0 880.0 209.0165 02881.00a0jare.0 0 % 1.0 8.0 E.0 8.310 reel 01210 40 2.0 0 SES Dross.0 ass. .0 花子さんの預金の推移 Las 0 Dres D 0 Sa 0 0 0 2012 1年目の初め1 (1年目) 10+p 1年目の終わり 1.01 (10+ p) 0 6.0 a1 as 26.0200.00 万円入金 10.0 198008290 Suga 2年目の初め 81 00004.0 2年目の終わり (2年目) 1.01 (10+p)+p000 BEN 1.01 (1.01 (10+p) + p} a20 万円入金 STEA 3年目の初め (3年目) 3年目の終わり Be SS 参考図 (数学Ⅱ・数学B第4問は次ページに続く。 83 TS 83 S -44- (260644)

未解決 回答数: 0
数学 高校生

数Cの質問です! 例題ではメネラウスの定理を使う別解がありますが practiceではその別解がありません なぜ例題はメネラウスの定理で解けて practiceは解けないのかを教えてほしいです!! よろしくお願いします🙇🏻‍♀️՞

08 基本 例題 57 交点の位置ベクトル (空間) 四面体 OABCにおいて, OA=d, OB=1, OC=c とする。 線分ABを 12 に内分する点を L, 線分BCの中点をMとする。 線分AM と線分 C の交点をPとするとき,OPをd,,こを用いて表せ。 p.87 基本事項 4. p. 105 基本事項 1 基本29 基本 59 CHART & SOLUTION 交点の位置ベクトル 2通りに表し 係数比較 Momo33 平面の場合 (基本例題 29) と同様に, AP: PM=s : (1-s), CP:PL=t: (1 - t) として、 点Pを線分AMにおける内分点, 線分 CL における内分点の2通りにとらえ, OP ズーム べ りに表す。 解答 OL-20A+OB+16 a+ 3 3 1+2 OMOB+OC-12/26+2/28 2 AP:PM=s: (1-s) とすると OP= (1-s)OA+sOM =(-s)a+s(+1) =(1-s)a+sb+sc CP:PL=t: (1-t) とすると 0 別解 ABMと直線LC にメネラウスの定理を用い 第解こ内 C ると AL BC MP LB CM PA =1 と C S A 2 よって 1.4.M-1 12MP 71 1-S M ゆえに,MP=PA となり、 1-t 2 B Pは線分AM の中点である。 よって OP=OA+OM ① 2 10 6+c 2 2 OP= (1-1)0€+10L = (1-1)+(a+16) ^±±²à±±±±± 2 - ta+b+(1-1)c ・② ①,②から (1-sat/s6+1/2sc=1/21+1/316+(1-1) 4点 0, A, B, Cは同じ平面上にないから t 同じ平面上にない4点0 A(a),B(b),C(c)に対 し、次のことが成り立つ。 sa+to+uc F = s'a+t'б+u'c Je 1-s= 2 1-8-1, -1, -1-1 1-5=1321 1/28-1/3を連立して解くと S=1/21-22 03 AM SE t= これは, 12s=1-1 を満たす。ゆえに OP = 1/24 + 1/6+1/20 t', u' は実数) PRACTICE 57 9 たす点とする。 u=u' (s, t, u,s', 四面体 OABC の辺 AB, BC, CA を 3:22:31:4 に内分する点を,それぞれD, EF とする。 CDとEFの交点をHとし, OA=d,OB=6,OC=2とする。このと ベクトルOH を a, b, c を用いて表せ。 土

未解決 回答数: 0